C 324 22 A2 no. 130: 64 7. 1 :. 2 LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

JUN 1 1967

State of California THE RESOURCES AGENCY epartment of Water Resources

BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume I: NORTH COASTAL AREA

MARCH 1966

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources

State of California THE RESOURCES AGENCY Department of Water Resources

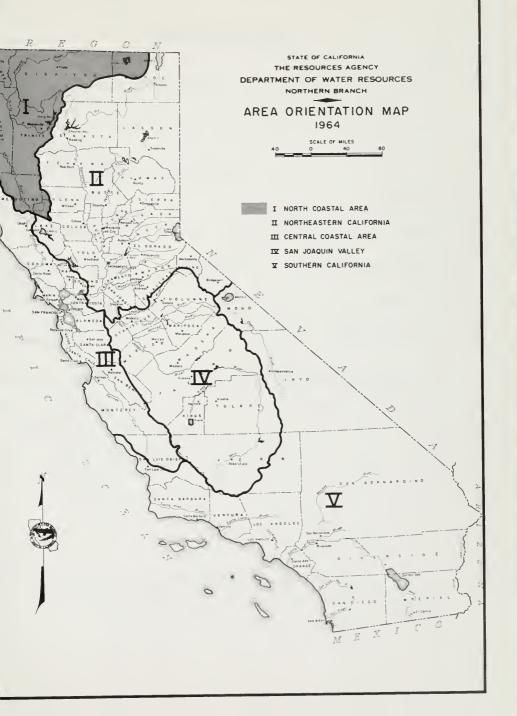
BULLETIN No. 130-64

HYDROLOGIC DATA: 1964

Volume I: NORTH COASTAL AREA

MARCH 1966

HUGO FISHER Administrator The Resources Agency EDMUND G. BROWN Governor State of California WILLIAM E. WARNE Director Department of Water Resources


LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA Volume II - NORTHEASTERN CALIFORNIA Volume III - CENTRAL COASTAL AREA Volume IV - SAN JOAQUIN VALLEY Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

Appendix A - CLIMATE Appendix B - SURFACE WATER FLOW Appendix C - GROUND WATER MEASUREMENTS Appendix D - SURFACE WATER QUALITY Appendix E - GROUND WATER QUALITY

METRIC CONVERSION TABLE

ENGLISH UNIT	EQUIVALEN	NT METRIC UNIT
Inch (in)	2.54	Centimeters
Foot (ft)	0.3048	Meter
Mile (mi)	1.609	Kilometers
Acre	0.405	Hectare
Square mile (sq. mi.)	2.590	Square kilometer
U.S.gallon (gal)	3.785	Liters
Acre foot (acre-ft)	1,233.5	Cubic meters
U.S. gallon per minute (gpm)	0.0631	Liters per second
Cubic feet per second (cfs)	1.7	Cubic meters per minute

TABLE OF CONTENTS

	Page
ORGANIZATION OF BULLETIN NO. 130 SERIES	ií
AREA ORIENTATION MAP	iii
METRIC CONVERSION TABLE	iv
LETTER OF TRANSMITTAL	ix
ORGANIZATION, DEPARTMENT OF WATER RESOURCES	x
INTRODUCTION	
	1
Summary of Hydrologic Data Programs	4

APPENDIXES

Appendix

A	Climate
В	Surface Water Flow 21
	Definition of Terms
C	Ground Water Measurements
	Numbering Systems 40
D	Surface Water Quality 55
Е	Ground Water Quality 89
	Well Numbering System

FIGURES

Figure

B-1	Surface Water Measurement and Su						
	Stations, 1963-64	• • •	• • •	• • • •	• •	• •	26
C-l	Ground Water Basins, 1963-64 .						44

TABLES

Table		Page
A-l	Index of Climatological Stations for 1963-64	12
A-2	Precipitation Data for 1963-64	14
A-3	Temperature Data for 1963-64	16
A-4	Evaporation Data for 1963-64	18
A-5	Storage Gage Precipitation Data for 1963-64	19
B-1	Daily Mean Discharge	
	Shasta River at Edgewood	28
	Little Shasta River near Montague	29
	Etna Creek near Etna	30
	Moffett Creek near Fort Jones	31
	Weaver Creek near Douglas City	32
	Browns Creek near Douglas City	33
	North Fork Trinity River at Helena	34
	Big Creek near Hayfork	35
C-1	Average Ground Water Level Changes in North Coastal Area Basins, Spring 1963 - Spring 1964	45
C-2	Ground Water Level Measurements	46
D-l	Sampling Station Data and Index	59
D-2	Analyses of Surface Water	60
D-3	Spectrographic Analyses of Surface Water	86
D-4	Radioassay of Surface Water	87
E-1	Analyses of Ground Water	93
E-2	Trace Element Analyses of Ground Water	100

PLATES (Bound at back of bulletin)

Plate	
l	Climatological Observation Stations, 1963-64
2	Mean Seasonal Precipitation

PARTMENT OF WATER RESOURCES BOX 388 RAMENTO

December 20, 1965

Honorable Edmund G. Brown, Governor, and Members of the Legislature of The State of California

Gentlemen:

The Bulletin No. 130 series of reports incorporates data on surface water, ground water, and climate previously published annually in Bulletin Nos. 23, 39, 65, 66, and 77. With the inauguration of this series of reports, publication of the earlier reports is suspended. This is the second in the new series of reports.

Bulletin No. 130 will be published annually in five volumes, each volume to report hydrologic data for one of five specific reporting areas of the State. The area orientation map on page iii delineates these areas.

This report is Volume I, "North Coastal Area". It includes five appendixes of detailed hydrologic data: Appendix A, "Climate", Appendix B, "Surface Water Flow", Appendix C, "Ground Water Measurements", Appendix D, "Surface Water Quality", and Appendix E, "Ground Water Quality".

The collection and publication of data such as is contained in Bulletin No. 130 is authorized by Sections 225, 226, 228, 229, 232, 345, 12609, 12616, and 12622 of the State of California's Water Code.

The basic data programs of the Department of Water Resources have been designed to supplement the activities of other agencies, in order to satisfy specific needs of this State. Bulletin No. 130 is designed to present useful, comprehensive, accurate, and timely hydrologic data to the public.

Collection of much of the data presented has been possible only because of the generous assistance of other agencies. I wish especially to acknowledge the help given by agencies whose measurements directly contributed to Bulletin No. 130-64. They include the United States Geological Survey, Forest Service, Weather Bureau, and the local County Farm Advisors of the Agricultural Extension Service, the California Department of Public Health, and the many local weather observers who have so unselfishly given of their time.

Sincerely yours,

ih Tham

Director

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor HUGO D. FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer JOHN R. TEERINK, Assistant Chief Engineer, Area Management

- - - - 0 - - - - -

NORTHERN DISTRICT

Activities covered by this report were under the supervision of

Robert F. Middleton, Jr. Chief, Basic Data Unit

Assisted by

James K. Eberly	•	٠	•	•	•••	•	٠	•	•	•	•	•	•	•	•	•	•••	•••	• •	Climate
Linwood L. Bates .	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	. Re	dding	Fiel	Ld Office
Walter D. McIntyre	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	. C	olusa	Fie.	Ld Office
Ernest G. Olsen	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	•••	Surfa	ce Wa	ater Flow
Thomas I. Rausch .	•	•	•	•	••	•	•	•	•	•	•	•	•	•	•	G	ound '	Water	Mea	surements
Harold B. German .	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	•	• • •	••••	Wate	r Quality

Reviewed and coordinated by Statewide Planning Office Data Coordination Branch

INTRODUCTION

The Department of Water Resources is concerned with the development and use of water supplies, and with the methods that are employed to observe and measure hydrologic conditions. Hydrologic data are used for the planned development of new water supplies including its uses for irrigation, drainage, hydropower, flood control, navigation, recreation, and fisheries enhancement; the operation of existing projects; and other associated engineering projects. The Department's hydrologic data programs have been designed to supplement and augment other agencies' activities to fulfill the specific needs of the Department and the State.

The tabulation on page 4 presents a summary of the active hydrologic data programs in the North Coastal Area during the 1963-64 fiscal and/or water year. The table specifies the origin of the programs, program objectives, program authorizations, the type of data collected, the collection agency, the frequency of measurement or service, and the total number of stations measured during 1963-64.

Hydrographic data activities, augmented by the climate data program, supplement streamflow observations carried on by the U.S. Geological Survey.

The climatologic data collected by the Department include information on precipitation, temperature, and evaporation. Both surface flow and recharge to ground water vary in direct response to precipitation. Evaporation is an important part of the consumptive use of water and, with other climatological events, affect conditions and use of a water supply.

Ground water is the source of supply for about one-half of the water beneficially used in California. However, the use of ground water in the

-1-

North Coastal Area is less extensive than in other areas of the State. Data on the current status of the major ground water basins is collected and processed within the framework of the Department's Ground Water Measurement Program. Field measurements are made by the U. S. Geological Survey. The review, processing, and editing of the data is performed by the Department. Since only a few wells are measured in any of the monitored ground water basins, it is difficult to derive meaningful values for the average changes in water level elevations.

Water quality is a measure of the characteristics of a water supply that affect the useability of the water. As greater demand is placed on available water supplies more effective use and reuse of the State's water becomes necessary. Since quality may limit the useability of a water, knowledge of quality conditions is necessary for the most efficient use of water supplies.

The Department's climatologic and surface water measurement stations have been selected to augment the basic hydrologic networks of the U.S. Weather Bureau and U.S. Geological Survey, respectively. The current federal hydrologic data programs are, in general, not sufficient to meet the many needs of the State.

Efforts are continuously being made to improve the quality and useability of both the federal government and State's hydrologic data networks. In some instances the weather data program has been hampered by relatively inaccessible mountainous areas and an inability to obtain the services of qualified local weather observers. The ground water data programs are continuously undergoing changes to provide a more accurate picture of ground water occurrences and associated quality makeup of the waters in the various defined ground water aquifers or zones.

-2-

The future conduct of the hydrologic data programs in the North Coastal Area, particularly with respect to the water quality activities, will be to reduce the frequency of measurements at a number of stations and continue to retain the quality of data currently obtained. An increasing effort is being made to more adequately define the ground water aquifers through geologic investigations. With this increased emphasis on the differentiation between the various ground water zones, the data collected can be made more useful and meaningful.

All of the hydrologic data programs are continually undergoing changes to existing networks to improve the quality and useability of the data.

SUMMARY OF HYDROLOGIC DATA IN THE NORTH COASTAL AREA, 1963-64

Program : Origin 1956	gin :					1	
		Purpose :	: Authorization :	: Type Collected : Collected by :	: : Collected by	Frequency Measured or Serviced	: Number of : Stations
	156	To maintain an inventory of historical climatological	Secs. 228, 12609, 12616	Precipitation Precipitation	Cooperators USWB	Daily Daily	54 72
		conditions to: (1) predict runoff; (2) plan and operate water projects; and (3) make	of Water Code	Storage Gages Storage Gages	DWR USWB	Annuelly Annuelly	20
		all weather data availanle for ready use.		Temperature	Cooperators	Daily	22
				Evaporation Evaporation	Cooperators USWB	Daily Daily	4
				Wind .	US "B	Daily	3
Surface Kater Measurement 1924	54	To provide an inventory of Seos. 225, data on surface water which 226, 228, will be readily available 12609, 12616 for: (1) foreeasting stream of Water Code flow; (2) planning water dw- elopment projects; (3) opera- tion of flow of ontrol and multipurpose projects; and (4) formulation of greements on water right without expen- sive litigation.	Seos. 225, 226, 228, 12609, 12616 • of Water Code •	Streamflow	DwR	Serviced twice each month, measured monthly	ω
Ground Water Newsurement 1929	5	To compile representative ground water data, so that: (1) information will be readily available for fut- ure conjunctive operations; (2) appressal can be made (2) appressal can be made (2) appressal can be made of drainage and overdraft problems; (3) local inter- est and cooperation will be stimulated; and (4) plan- ning to develop the poten- tial ground water basine can be facilitated.	Sees. 225, 226, 228, 12609 of Mater Code	Depth to Ground USGS	ISOS	Monthly	36

-4-

					Data	a	
Program	: Origin :	. Purpose	Authorization	: : Type Collected : Collected by :	: Collected by :	: Frequency Measured : Number of . or Serviced : Stations	Number of Stations
Surface Water Quality Data	1951	To compile representative surface water quality data to: (1) determine the qual- ity of the State's surface waters; (2) deteod changes in outly and alart control	Sec. 226, 229, 12609, 12616 of Water Code	Seo. 226, 229, Mineral (complete DWR 12609, 12616 mineral semianuu- of Water Code ally, partialmin- eral remaining months)	Яща	Monthly	25
		agencies when adverse ohanges occur; (3) determine trends; (1) unroud and ord total the		Spectrographic (heavy metale)	DwR	Semiannually	8
		data in a readily available		Radiological	DWR	Semiannually	23
		torus and information col- lected.		Bacteriological	DWR	Monthly	14
Ground Water Quality Data	1953	To compile representative ground water quality data to: (1) establish existing	Sec. 226, 229, 12609, 12616, of Water Code	Sec. 226, 229, Complete and 12609, 12616, partial mineral of Water Code	DWFR and local Annually county farm advisors	Annually	61
		ground water bodges; (2) de- termine the quality of the State's ground waters; (3) detect changes in quality and alert control agencies when adverse changes cocur; (4) determine trends; and (5) provide for organization and water quality data.		Heary Metals	Samo	Selected intervals	~

-5-

APPENDIX A

CLIMATE

CLIMATE

The Department of Water Resources cooperates with the U. S. Weather Bureau and local agencies in the collection of climatological data. Climatological data programs are dependent, for the most part, on the cooperation of local observers. Data from selected key stations are published by both the Department and the U. S. Weather Bureau.

The tables in this appendix include total monthly and seasonal precipitation; monthly temperatures showing maximum, average maximum, average, average minimum and minimum temperatures; evaporation data showing the total evaporation for each month of the 1963-64 fiscal year; and total annual precipitation for the 1963-64 fiscal year as measured at the storage gages in the northern part of the State (so installed because of their extreme remoteness).

Most of the stations use standard meteorological equipment. Commonly accepted procedures are employed in summing up monthly totals and computing mean values. In the preparation of the mean seasonal isohyetal map (Plate 2) the long term mean values are based on the 50-year mean period 1905-06 to 1954-55, for those stations with sufficient length of record. At other stations all available records are used in determining the mean. Station density in the North Coastal Area is adequate for making reasonable estimates of average conditions over extended areas, with the possible exception of the areas in the higher altitudes.

A description of the tables and plates included in this appendix follows:

Table A-1, "Index of Climatological Stations", contains a listing of all active climatological stations in the North Coastal Area during the 1963-64 fiscal year. The station names are arranged in alphabetical order.

-9-

Each station is given a code number which is composed of two parts -- a drainage basin designation, and an Alpha Order Number which corresponds to the alphabetical sequence of the station with respect to the other stations in that drainage basin. A sub-number of two digits is occasionally affixed to the four digit Alpha Order Number. This is necessary to provide for greater flexibility as new stations are added to the listing. The cooperator index number is used when the Alpha Order Number is in conflict with the U. S. Weather Bureau number.

Other information is also given, including the year in which the record was begun, the year the record ended and the years of missing record. The code for the county in which the station is located is shown below:

County	Code
Del Norte	08
Humboldt	12
Mendocino	23
Modoc	25
Siskiyou	47
Trinity	53

<u>Table A-2</u>, "Precipitation Data", contains a listing of all precipitation measurements collected in the North Coastal Area during the 1963-64 fiscal year. The listing is in alphabetical order by station name. The table includes a summary of total seasonal precipitation and lists each monthly amount for the 1963-64 fiscal year.

<u>Table A-3</u>, "Temperature Data", describes air temperature data collected by the Department of Water Resources in the North Coastal Area. The stations are listed in alphabetical order. A listing by drainage basin and Alpha Order Number is also given. A column titled "Season" summarizes the extreme values of temperature reported at each station and also lists the mean of the monthly values. The maximum, average maximum, average, average

-10-

minimum and minimum monthly values are given for each station, and are based on 1963-64 data.

<u>Table A-4</u>, "Evaporation Data", describes the data collected from all evaporation stations in the North Coastal Area. This information is used to determine loss of water by evaporation from existing and proposed water storage and conveyance facilities. The stations are listed alphabetically. The table includes a listing of drainage and Alpha Order Numbers corresponding to the station names. Total evaporation is shown for each month during the 1963-64 fiscal year.

<u>Table A-5</u>, "Storage Gage Precipitation Data", presents the total 1963-64 seasonal precipitation at a number of storage gages located in remote regions in the North Coastal Area.

<u>Plate 1</u>, "Climatological Observation Station", shows the locations of all actively reporting climatological stations in the North Coastal Area. These include the U. S. Weather Bureau stations reported in the U. S. Department of Commerce monthly publication, "Climatological Data", and many stations operated by cooperative observers. A legend on the map describes the symbols used for the various types of measuring equipment and observations made.

<u>Plate 2</u>, "Mean Seasonal Precipitation", shows the rainfall pattern over the North Coastal Area. Lines of equal mean seasonal precipitation are drawn to define the normal amounts. The lines represent normals based on a 50-year mean period of 1905-06 through 1954-55.

-11-

TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS FOR 1963-64 NORTH COASTAL AREA

						ANL							
Station Number Name	Elevotion (in feet)	Section	Tawnship	Range	40-Acre Tract		Latitude	Langitude	Coaperator Number	Caoperator's Index Number	Record Began	Record Ended	Yeors Missing County Code
Number Nome	ш~	Ś	-	œ	40-A				0~	Ŭ	œœ	άū	γÖ
F6 0018 A0ANAC LOOGE F6 0088 ALDERPOINT F5 0253 ARCATA A P F3 0715 BESWICK 7 S F4 0738 BIG BAR RANGER	435 200 6140	SEC 1	7 TO35 9 TO7N 3 T47N	ROSE ROIE RO3W	M N + 0 F	39 40 40 41	50 48 11 00 58 18 52 00 44 54	123 42 00 123 36 00 124 05 24 122 14 00 123 14 42	900 000 900		1950 1940 1957 1952 1943		23 12 12 47 53
F3 0764 BIG LAGOON F2 0786-01 BIG SPRINGS 4 F5 0901 BLUE LAKE F5 0903 BLUE LAKE REDW F6 1046 BRANSCOMB 2 NW	E 2955 105 000 CR 975	SEC 0 SEC 3 SEC 1	0 T06N 1 T06N	R04W R02E R03E	RM	41	09 36 35 30 52 54 55 00 41 12	124 05 54 122 19 42 123 59 12 123 49 00 123 39 36	000 900		1958 1960 1951 1956 1959		12 47 12 12 23
F1 1050 BRAY 10 WSW F6 1080 BRIDGEVILLE 4 F6 1083 BRIDGEVILLE 9 F6 1181 BULL CREEK F6 1210 BURLINGTON ST	NNW 2050 0 650 410	SEC 2 SEC 1 SEC 3	1 TO1N 6 TO1S	R03E R03E R01E	н н н н	40	34 00 31 00 28 06 21 00 18 30	122 08 00 123 49 00 123 48 00 124 06 30 123 54 24	900 000		1951 1954 1959 1960 1950		47 12 12 12 12
F4 1215 BURNT R4NCH 15 F4 1215-15 BURNT RCH HMS F2 1316 CALLAMAN RANGE F7 1505 CAPE RANCH F3 1606 CECILVILLE SAW	R STA 3136 710	SEC 1 SEC 2	1 T40N 3 T01N	R06E	F M	40	47 48 48 30 18 00 27 24 06 00	123 28 48 123 28 30 122 48 00 124 22 48 123 03 00	000 900 000		1945 1963 1943 1959 1954		53 53 47 12 47
F6 1608 CEDAR CREEK HA F3 1799 CLEAR CREEK F4 1886 COFFEE CREEK R F3 1990 COPCO DAM NO 1 F6 2081 COVELO	975 IS 2500	SEC 2	7 T15N 6 T07W	R07E R37N R04W		41 4 41	50 24 42 30 05 59 00 47 00	123 42 18 123 26 54 122 42 122 20 00 123 15 00	900 900 900		1957 1959 1960 1928 1921		23 47 53 47 23
F6 2084 COVELO EEL RIV F0 2147 CRESCENT CITY F0 2148 CRESCENT CITY F0 2150 CRESCENT CITY F0 2152 CRESCENT CITY	1 N 40 7 ENE 120 HMS 50	SEC 0	0 T16N 8 T16N 0 T16N	R01W R01E		41 41 41	50 00 46 00 46 00 46 00 45 18	123 05 00 124 12 00 124 05 00 124 12 00 124 12 00 123 59 30	900 900 900		1939 1931 1913 1941 1947		23 08 08 08
F1 2188 CROWDER FLAT F6 2218 CUMMINGS F1 2480 DORRIS INSPECT F6 2490 DOS RIOS F0 2749 ELK VALLEY	STA 4240 927	SEC 2 SEC 3	1 T23N 6 T48N 1 T22N	R01W R13E	RN	4 39 4 41 4 39	53 00 50 00 57 18 43 00 00 00	120 44 00 123 38 00 121 54 30 123 21 00 123 43 00	900 000 900		1958 1927 1959 1917 1938		25 23 47 23 08
F2 2899 ETNA F7 2906 ETTERSBURG 2 S F6 2910 EURFKA W8 CITY F7 3025 FERNDALE 8 SSW F6 3030 FERNDALE 2NW	E 1370 43	SEC 1 SEC 2 SEC 0	6 T045	R09W R02E R01W R02W R02W		4 40 4 40 4 40	28 00 07 12 48 29 30 35 54	122 54 00 123 58 18 124 10 124 20 24 124 16 36	000 900 900		1940 1953 1878 1959 1963		47 12 12 12 12
F5 3041 FIELDBROOK 4 C F3 3122 FOOTHILL SCHOO FOREST GLEN F4 3130 FOREST GLEN FOREST GLEN F3 3151 FORKS OF SALMO FORT DICK 1 NN	2960 2340 2340	5EC 2 5EC 2 5EC 2	2 1015	RO5W RO8E Ro7E		4 41 4 40 4 41	56 36 48 42 23 00 15 12 52 00	122 22 18	000 900 900		1956 1962 1930 1959 1951		12 53 47 08
F2 3176 FORT JONES 6 F2 3182 FORT JONES RAM F6 3194 FORTUNA FORTUNA F6 3217 FOX CAMP F6 3320 GARRERVILLE	SE 3324 IGER ST 2720 60 2500 340	SEC 0 SEC 3 SEC 0	2 T43N 5 T03N 9 T025	R01W		4 41	35 00 36 00 36 00 18 24 06 00	122 43 00 122 51 00 124 09 00 124 03 54 123 48 00	900 000 811		1941 1936 1956 1960 1938		47 47 12 12 12
F6 3322-0] GARRERVILLE MA F0 3357 GASQUET RANGER F2 3361-03 GAZELLE - EPPE F2 3362-03 GAZELLE ANNW F2 3363 GAZELLE LOOKOL	RSON 2760 2730	SEC 1	1 T17N 7 T43N	RO2E RO6W RO6W		4 41 4 41 4 41	06 00 52 00 34 18 34 42 24 30	123 47 40 123 58 00 122 33 12 122 32 42 122 40 30	900		1935 1940 1950 1949 1956	1964	12 08 47 47 47
F1 3564 GRASS LAKE HWY F2 3614 GREENVIEW F6 3647 GRIZZLY CRK RE F3 3761 HAPPY CAMP RAN F6 3785 HARRIS 7 SSE	2818 DWOOD 500 IGR STA 1090	SEC 2 SEC 1 SEC 1	8 T44N 9 T43N 1 T01N 1 T16N 7 T055	R09W R02E R07E		1.41	37 48 33 00 29 00 48 00 59 24		900 900 900		1954 1943 1963 1914 1953		47 47 12 47 23
F4 3810 HARISOOK INN F4 3859 HAYFORK RANGEF F4 3949 HIDDEN VALLFY F6 3956 HIGH ROCK F3 3987 HILTS		SEC 1 SEC 3 SEC 1	2 T31N 2 T01N 5 T01S	R03E R12W R07E R02E R07W	R N M H K H	4 40 1 40 1 40	00 48 33 00 24 54 22 48 00 00	123 47 30 123 10 00 123 24 30 123 56 30 122 38 00	900 000 808		1958 1915 1959 1960 1939		12 53 53 44 47
F8 4037-02 HOLMES F7 4074 HONEYDEW 2 W5W F7 4074-01 HONEYDEW HUNTE F5 4077 HONOR CAMP 42 F4 4082 HOOPA	80 380 R 380 1875) SEC 0 SEC 0	2 7035 2 7035 11 707N	ROIW ROJE	I C F I M F I K F	4 40	25 06 14 18 14 18 56 48 03 00	124 09 00 124 09 06 123 52 42	900 000 000		1954 1953 1955 1956 1941		12 12 12 12 12

TABLE A-1 (Continued) INDEX OF CLIMATOLOGICAL STATIONS FOR 1963-64 NORTH COASTAL AREA

						~ -						_							
Number	Station	Elevotion (in feet)	Section	Township	Ronge	40-Acre Troct	Bose & Meridion	0	- Lotitude	11	0	- Longitude	11	Cooperator Number	Cooperotor's Index Number	Record Begon	Record Ended	Yeors Missing	County Code
F4 4084 F4 4191 F0 A202 F3 4577 F3 4583	HOOPA 2 SE Hyampom IDLEWILD MAINT STN Klam4Th Klam4Th RIVER 1 SW	1260 1250	SEC SEC SEC	31 T08 25 T03 06 T17 15 T13 12 T46	N ROAE N ROAE N RO1E	D	нн н	40 41	37 54 31	00 00 00	123 123 123 124 122	28 46 02	00 12 00	900 900 900 900 000		1954 1940 1946 1941 1958	1963		12 53 08 08 47
F6 4587 F5 4602 F6 4690 F1 4638 F6 4651	KNEELAND 10 SSE KORBEL LAKE MOUNTAIN LAVA BEDS NAT MON LAYTONVILLE		SEC SEC SEC	13 T03 26 T06 21 T05 28 T45 21 T21	N ROŻE 5 ROŻE N RO4E	Р Н	H M M	40 40 41	52 01	00 00 46	123 123 123 121 121	57 24	30 00	900 900 900 900 900		1952 1937 1939 1940 1940		06	12 12 53 47 23
F1 5081-01 F5 5244	LITTLE RIVER LITTLE SHASTA LONG BELL STATION MAD RIVER RANGER STA MANN RANCH	150 2725 4375 2775 2200	SEC SEC SEC		N R05W N R05E N R06E	B	M M H	41 41	43 28 27	00 00 00	124 122 121 123 124	23 25 32	00 00 00	000 000 900 611		1949 1960 1956 1943 1960			12 47 25 53 12
F1 5505 F6 5676 F6 5713 F2 5783 F2 5785	MEDICINE LAKE MINA 3 NW MIRANDA SPENGLER RCH MONTAGUE MONTAGUE 3 NE	6660 2875 400 2500 2640	SEC SEC	28 T05 19 T03 27 T45	N RO3E 5 RO7E 5 RO4E 5 RO4E N RO6W N RO5W	A 0	H H M	40	00 12 43	06 00 42	121 123 123 122 122	23 46 31	30 00 36	000 900	045763	1946 1927 1939 1868 1948		05	47 53 12 47 47
F1 5941 F4 6032 F6 6050 F6 6050-01 F3 6328	MOUNT HEBRON R 5 Mumbo Basin Myers Flat Myers Flat - Crane Oak Knoll Ranger Sta	5700 175	SEC	32 T46 35 T39 30 T02	N R06W 5 R03E	E	M H	41 40	12 15	00 42	122 122 123 122	32 52	00 00	900 000		1942 1946 1950 1963 1942			47 53 12 12 47
F6 6408 F5 6497-01 F5 6497-02 F5 6498 F3 6508	OLD MARRIS ORICK 3 NNE ORICK ARCATA REDWOOD ORICK PRAIRIE CREEK ORLEANS	75 161	SEC SEC SEC	80 T04 22 T11 22 T11 22 T11 22 T11 31 T11	N RO1E N RO1E N RO1E	ĸ	H H H	41 41 41	19 19 20	24 24 00	123 124 124 124 123	02 02 02	30 36 00	000 000 900		1956 1950 1954 1937 1885			12 12 12 12 12 12
F7 6835-02	PATRICKS PT STATE PK PETROLIA PETROLIA 4 NW PHILLIPSVILLE 1SE PLASKETT	175 900	SEC SEC SEC	26 T09 03 T02 19 T01 19 T03 27 T22	5 RO2W 5 RO4E	L 0 8	H H M	40 40 40	19 22 11	30 24 42	124 124 124 123 122	16 16 46	30 00	804 000 000 000 000		1947 1958 1953 1963 1960			12 12 12 11
F6 7404 F4 7698 F3 8025 F6 8045 F3 8083-01	RICHARDSON GROVE SALYER RANGER STA SAWYERS BAR R S SCOTIA SEIAD VALLEY R S	2169 139	SEC SEC	14 T06 20 T40 07 T01 11 T46	N R11W N R01E	!	H M H	41 40	53 18 29	00		35 08 06	00	900 900 900 900 900		1931 1931 1926 1953			12 53 47 12 47
F7 R162 F6 8163 F0 R311-01 F0 8311-02 F3 8346	SHELTER COVE SHERNOOD VALLEY SMITH RIVER 2 WNW SMITH RIVER 7 SSE SOMESBAR 1W	2170 195 60	SEC SEC SEC	16 T05 32 T20 21 T18 30 T17 04 T11	N R14W N R01W N R01E	F	M H H	39 41 41	32 56 50	36 30 24	124 123 124 124 123	26 10 06	30 42 36	901 000 000		1958 1951 1952 1954			12 23 08 06 12
F6 8490 F3 8919 F4 9024 F1 9053 F1 9057	STANDISH HICKEY PARK TI BAR R S TRINITY DAM VISTA PT TULELAKF TULELAKE INSR STN	850 710 2500 4035 4408	SEC SEC	16 T34 06 T47	N ROSE	L	H M M	41	31 48 58	48	123 122 121	31 46	30 00	900 905 900 900	049057	1950 1959 1959 1932 1953			23 47 53 47 25
F7 9177 F4 9490 F2 9499 F6 9527 F7 9654	UPPER MATTOLE WEAVERVILLE RANGER S WEDT 1 S WEDTT 2SE WHITETHORN	255 2050 3630 600 1050	SEC SEC SEC	33 TO2 12 T33 11 T41 12 TO2 15 TO5	RION ROSH	Г Н	M M H	40 41	44 25 18	00 00 29	124 122 122 123 123	56 23 53	00 00 40			1666 1871 1957 1961 1962			12 53 47 12 12
F6 9684 F6 9685 F6 9686 F6 9753 F2 9866	WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR WITTS RANCH YREKA	1925 1365	SEC SEC	17 T18 05 T17 16 T18 27 T45	N R13W N R13W	L	M	39 39	21 24	00 12	123 123 123 123	19 21	06	900 900 006 900		1950 1955 1911 1963 1071			23 23 23 12 47
F6 9940	ZENIA 1 SSE	2880	SEC	22 103	5 R068	G	н	40	11	18	123	28	54	000		1950			53

TABLE A-1 INDEX OF CLIMATOLOGICAL STATIONS FOR 1963-64 NORTH COASTAL AREA

	Stotion	Elevation (in feet)	Section		Township	Ronge	5	e & Meridian		atıtude			Longitude		Cooperator Number	Cooperotor's Index Number	Record Begon	Record Ended	Years Missing	County Code
Number	Nome	ω~	ŝ		Ĕ	œ	40	Bose		- Loi	н	0	<u>ت</u>		Ú2	ů –	αñ	αŭ	Ϋ́	Co
F6 0018 F6 0088 F5 0253 F3 0715 F4 0738	ADANAC LODGE ALDERPOINT ARCATA A P BESWICK 7 S BIG BAR RANGER STA	435 200 6140	SEC SEC SEC	27 19 33	T23N T03S T07N T47N T33N	ROSE ROSE ROSW	м	M H H	39 40 40 41 40	11 58	00 18	123 123 124 122 123	36	00	000 900 000 900 900		1950 1940 1957 1952 1943			23 12 12 47 53
F5 0764 F2 0786-0 F5 0901 F5 0903 F6 1046	BIG LAGOON 1 BIG SPRINGS 4 E BLUE LAKE BLUE LAKE REDWOOD CR BRANSCOMB 2 NW	2955	SEC SEC SEC	05	109N 143N 106N 106N 121N	R04W R02E R03E	R	м	41 40 40 39	09 35 52 55 41	36 30 54 00 12	124 122 123 123 123	05 19 59 49 39	54 42 12 00 36	000 000 900 900		1958 1960 1951 1956 1959			12 47 12 12 23
F1 1050 F6 1080 F6 1083 F6 1181 F6 1210	BRAY 10 WSW BRIDGEVILLE & NNW BRIDGEVILLE P O BULL CREEK BURLINGTON ST PARK	2050 850	SEC SEC SEC	27 11 36	T43N T02N T01N T01S T02S	R03E R03E R01E	н	H H	41 40 40 40	34 31 28 21 18	00 00 06 00 30	122 123 123 124 123	49 48	00 00 30 24	900 900 000 000 000		1951 1954 1959 1960 1950			47 12 12 12 12
F4 1215 F4 1215-1 F? 1316 F7 1505 F3 1606	BURNT RANCH 1S 5 BURNT RCH MMS CALLAMAN RANGER STA CAPE RANCH CECILVILLE SAWYER	2150 1500 3136 710 3000	SEC SEC SEC	23	105N 105N 140N 101N 137N	RO8W RO3W	E F F	M	40 40 41 40 41	47 48 18 27 06	24	123 123 122 124 123	28 28 48 22 03	48 30 00 48 00	900 000 900 900 900		1945 1963 1943 1959 1954			53 53 47 12 47
F6 1608 E3 1799 F4 1886 F3 1990 F6 2081	CEDAR CREEK MATCHERY CLEAR CREEK COFFEE CREEK RS COPCO DAM NO 1 COVELO	950 975 2500 2700 1385	SEC SEC SEC	07 06 29	T 23N T 15N T 07W T 48N T 22N	R07E R37N R04W	н	H M		50 42 05 59 47	00	123 123 122 122 123	42 26 42 20 15	18 54 00 00	805 900 900 900 900		1957 1959 1960 1928 1921			23 47 53 47 23
F6 2084 F0 2147 F0 2148 F0 2150 F0 2152	COVELO EEL RIVER RS CRFSCENT CITY 1 N CRFSCENT CITY 7 ENE CRESCENT CITY MMS CRESCENT CITY 11 E	40 120	SEC SEC SEC	20 08 20	T 2 3 N 7 16 N T 16 N T 16 N T 16 N T 16 N	R01W R01E R01W		H H	39 41 41 41 41	46	00 00	123 124 124 124 124	05 12 05 12 59	00 00 00 30	900 900 900 900		1939 1931 1913 1941 1947			23 08 06 08 08
F1 2188 F5 2218 F1 2480 F6 2490 F0 2749	CROWDER FLAT CUMMINGS DORRIS INSPECT STA DOS RIOS ELK VALLEY	5175 1270 4240 927 1711	SEC SEC SEC	38	T23N	ROIW RIJE	R	M	41 39 41 39 42	53 50 57 43 00	00 00 18 00 00	120 123 121 123 123	38	30	000 900 900 900 900		1958 1927 1959 1917 1938			25 23 47 23 08
F2 2899 F7 2906 F6 2910 F7 3025 F6 3030	ETNA ETTERSBURG 2 SE EUREKA WB CITY FERNDALE 8 SSW FERNDALE 2NW		SEC SEC SEC	28 16 22 06 34	1045 105N	ROZW	P	H H	41 40 40 40	28 07 48 29 35		122 123 124 124 124	54 58 10 20 16	00 18 24 36	900 000 900 900 900		1940 1953 1878 1959 1963			47 12 12 12 12
F5 3041 F3 3122 F4 3130 F3 3151 F0 3173	FIELDBROOK 4 D RCH FOOTHILL SCHOOL FOREST GLEN FORKS OF SALMON FORT DICK 1 NNE	285 2960 2340 1270 50	SEC SEC SEC	25 22 24	T07N T46N T015 T10N T17N	R05W R08E R07E	E	M	40 41 40 41 41	56 48 23 15 52	42	124 122 123 123 124	22	06 18 00 00	000 000 900 900 900		1956 1962 1930 1959 1951			12 53 47 08
F2 3176 F2 3182 F6 3194 F6 3217 F6 3320	FORT JONES 6 ESE FORT JONES RANGER ST FORTUNA FOX CAMP GARBERVILLE	3324 2720 60 2500 340	SEC SEC SEC	02 35	T43N T03N	RO9W RO1W RO1E	C Q R	м Н	41 40 40 40	35 36 36 18 06	00	122 122 124 124 123		00 00 54 00	900 900 000 811 900		1941 1936 1956 1960 1938			47 47 12 12 12
F0 3357 F2 3361-0	1 GARPERVILLE MAINTSTN GASOUET RANGER STA 3 GAZELLE - EPPERSON 3 GAZELLE 4NW GAZELLE LOOKOUT	540 384 2760 2730 5200	SEC SEC SEC	21 17 16	T045 T17N T43N T43N T41N	R02E	N J C	HMM	40 41 41 41 41	06 52 34 34 24		123 123 122 122 122	58 33	40 00 12 42 30	809 900 000 000		1935 1940 1950 1949 1956	1964		12 08 47 47 47
F1 3564 F2 3614 F6 3647 F3 3761 F6 3785	GRASS LAKE MWY M S GREENVIEW GRIZZLY CRK REDWOOD HAPPY CAMP RANGR STA HARRIS 7 SSE	500 1090	SEC SEC SEC SEC SEC	29 11 11	T44N T43N T01N T16N T055	ROZE ROZE		M H H	41 41 40 41 39	37 33 29 48 59	48 00 00 00 24	122 122 123 123 123	47		900 900 900 900 900		1954 1943 1983 1914 1953			47 47 12 47 23
F6 3810 F4 3859 F4 3949 F6 3956 F3 3987	HARTSOOK INN HAVFORK RANGER STA HIDDEN VALLFY RCH HIGH ROCK HILTS	470 2340 1978 900 2900	SEC SEC SEC	24 12 32 15 23	T31N T01N T01S	R03E R12W R07E R02E R07W	R M K		40 40 40 40 42				47 10 24 58 38	30 00 30 30	000 900 000 808 900		1958 1915 1959 1960 1939			12 53 53 44 47
F6 4037-0 F7 4074 F7 4074 F5 4077 F4 4082	HONEYDEW 2 WSW	380 380 1875	SEC SEC	02 02 31	7035 7035	R01W R03E	C M K	H H H	40 40 40	56	18 18 48	123 124 124 123 123	09 09 52	06 00 06 42 00	000 900 000 900		1954 1953 1955 1956 1941			12 12 12 12 12

TABLE A-I (Continued) INDEX OF CLIMATOLOGICAL STATIONS FOR 1963-64 NORTH COASTAL AREA

Number	Station	Elevotion (in feet)	Section	Township	ebuoy	40-Acre Troct	Bose & Meridion	- Lotitude		0	- Longitude	11	Cooperator Number	Cooperofor's Index Number	Record Begon	Record Ended	Yeors Missing	County Code
F4 4084 F4 4191 F0 4202 F3 4577 F3 4583	HOOPA 2 SE Hyampom IDLEWILD MAINT STN KLAMATH KLAMATH RIVER I SW	1260 1250 25	5EC (5EC (5EC)	31 TOBM 25 TOBM 26 T17M 15 T13M 12 T46M	ROAE ROAE	D	H 43 H 4(H 41 H 41 H 41 M 41	37 54 31	00 00 00	123 123 123 124 122	28 46 02	00 12 00	900 900		1954 1940 1946 1941 1956	1963		12 53 08 08 47
F6 4587 F5 4602 F6 4690 F1 4838 F6 4851	KNEELAND 10 55E KORBEL LAKE MOUNTAIN LAVA BEDS NAT MON LAYTONVILLE		SEC SEC	13 TO3N 28 TO6N 21 TO59 28 T45N 21 T21N	ROZE ROZE ROZE	Р Н	H 40 H 40 H 40 M 41 M 39	52 01 43	00 00	123 123 123 121 121	57 24	30 00	900		1952 1937 1939 1940 1940		06	12 12 53 47 23
F1 5081-01 F5 5244	LITTLE RIVER LITTLE SHASTA LONG BELL STATION MAD RIVER RANGER STA MANN RANCH	2725 4375	SEC SEC SEC	81 TO8M 26 T45M 20 T42M 17 T01M 35 T02S	R05W R05E R06E	B	M 4] M 4] H 4(43 28 27	00 00	124 122 121 123 124	23 25 32	00 00	000 000 900 811		1949 1960 1958 1943 1960			12 47 25 53 12
F1 5505 F6 5676 F6 5713 F2 5783 F2 5785	MEDICINE LAKE MINA 3 NW MIRANDA SPENGLER RCH MONTAGUE MONTAGUE 3 NE	2875 400	SEC SEC SEC	10 T43N 28 T055 19 T035 27 T45N 18 T45N	R07E	•	M 4] H 40 H 40 M 4] M 4]	00	06 00 42		23 46 31	30 00 36	000 900	045783	1946 1927 1939 1888 1948		05	47 53 12 47 47
F1 5941 F4 6032 F6 6050 F6 6050-01 F3 6328	MOUNT HEBRON R 5 MUMRO BASIN Myfr5 Flat Myfr5 Flat - Crane Oak Knoll Ranger St4	5700 175	SEC SEC	82 T46N 85 T39N 80 T02S	R06W	EJ	H Ar	12	00 42	122	32 52	00 00	900 000		1942 1946 1950 1963 1942			47 53 12 12 47
F6 6408 F5 6497-01 F5 6497-02 F5 6498 F3 6508	OLD HARRIS ORICK 3 NNE ORICK ARCATA REDWOOD ORICK PRAIRIE CREEK ORLEANS	75 161	SEC : SEC : SEC (80 T049 22 T11N 22 T11N 22 T11N 22 T11N 31 T11N	RO1E RO1E RO1E	ĸ	H 41	19 19 20	24 24 00	124 124 124	02 02 02	30 36 00	000		1956 1950 1954 1937 1885			12 12 12 12 12
	PATRICKS PT STATE PK PETROLIA PETROLIA 4 NW PHILLIPSVILLE 15E PLASKETT	175 900 300	SEC SEC	26 T09N 03 T025 19 T015 19 T035 27 T22N	RO2W RO2W RO4E	L 0 8	H 40 H 40 M 40	19 22 11	30 24 42		18 18 46	48 30 00	804 000 000 000		1947 1958 1953 1963 1960			12 12 12 12
F6 7404 F4 7698 F3 8025 F6 8045 F3 8083-01	RICHARDSON GROVE SALVER RANGER STA SAWYERS BAR R 5 SCOTIA SEIAD VALLEY R S	2169 139	SEC (14 TO6M 20 T40M 07 T01M 11 T46M	I RI1W I RO1E	!	M 41 H 40	53 18 29	00 00 00		35 08 06	00 00	900 900 900 900 905		1931 1931 1926 1953			12 53 47 12 47
F7 8162 F6 8163 F0 8311-01 F0 8311-02 F3 8346	SHELTER COVE SHERWOOD VALLEY SMITH RIVER 2 WNW SMITH RIVER 7 SSE SOMESBAR 1W	2170 195 60	SEC SEC SEC	16 T055 32 T20N 21 T16N 30 T17N 04 T11N	R14W R01W R01E	F A F	H 40 H 39 H 41 H 41 H 41	32 56 50	36 30 24	124 123 124 124 123	26 10	30 42 36	900 901 000 900		1958 1951 1952 1954			12 23 08 08 12
F6 8490 F3 8919 F4 9024 F1 9053 F1 9057	STANDISH HICKEY PARK TI BAR R S TRINITY DAM VISTA PT TULELAKF TULELAKE INSP STN	710 2500	SEC (08 T13N 16 T34N 06 T47N	R06E R06E R08W R05E R05E	L	M 39 H 41 M 40 M 41 M 41	51 48	48 00 00	123 123 122 121 121	31 46 28	30	900 905 900 900 000	049057	1950 1959 1959 1932 1953			23 47 53 47 25
F7 9177 F4 9490 F2 9499 F6 9527 F7 9654	UPPER MATTOLE WEAVERVILLE RANGER 5 WEOI 5 WEOIT 2SE WHITETHORN	2050	SEC SEC	33 T025 12 T33N 11 T41N 12 T025 15 T055	R10W	н	H 40 M 40 H 40 H 40 M 40	25	00 00 29	124 122 122 123 123	56 23 53	00	900 900 900 000 000		1686 1871 1957 1961 1962			12 53 47 12 12
F6 9684 F6 9685 F6 9686 F6 9753 F2 9866	WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR WILTS RANCH YREKA	1925 1365	SEC (17 TI8N 05 T17N 18 T18N 27 T45N	R13W	L	M 39 M 39	21	00 12	123 123 123 123	19 21	06	900 900 006 900		1950 1935 1911 1963 1871			23 23 23 12 47
F6 9940	ZENIA 1 55E	2680	SEC :	2 1035	ROSE	G	H 40	11	18	123	28	54	000		1950			53

TABLE A-2 PRECIPITATION DATA FOR 1963-64 NORTH COASTAL AREA

		Precipitation in inches													
Station	Season	July	Aug	Sept	0ct	Nov	Oec	Jan	Feb	Mar	Apr	May	June		
SMITH RIVER	500501			0001			L		1						
SMIIH RIVER CRESSENT CITY 1 N CRESSENT CITY 7 ENE CRESSENT CITY HWS CRESSENT CITY 11 E ELK VALLEY	57.39 74.62 56.47 91.14 67.64	0 • 49 0 • 46 0 • 49 0 • 35 0 • 10	0.02 0.00 0.00 0.00 0.00	1.04 1.47 1.21 1.77 0.62	8.00 7.17 7.92	14.32 18.70 14.00 26.71 18.64	5.56 4.27 5.49	16.15 22.09 16.41 31.24 23.17	3.95 1.78 2.54	6.79 8.08 6.73 10.14 7.14	1.14 1.25 1.36 1.00 1.32	1.71 3.06 1.22 2.38 1.46	1.90 2.00 1.83 1.60 1.03		
FORT DICK 1 NNE GASQUET RANGER STA IDLEWILD MAINT STN SMITH RIVER 2 WWW SMITH RIVER 7 SSE	71.10 81.37 66.45 77.30 77.37	0.00 0.30 0.26 1.50 1.30	0.00 0.00 0.00 0.00 T	1.74 1.54 0.69 0.65 3.05	7.70 6.45 10.10	16.35 20.56 18.37 20.95 17.99	6.49 4.29 6.95	20.37 24.98 21.00 16.30 20.70	1.76 3.20	10.75 9.26 10.75	11.32 1.13 1.09 1.30 1.11	4 • 13 2 • 80 2 • 06 2 • 30 2 • 78	1.46 1.22 3.30 2.19		
LOST RIVER															
DORRIS INSPECT STA GRASS LAKE HWY M S LAVA BEOS HAT MON MOUNT HEBRON R S TULELAKE	12.70 20.50 13.47 09.44 07.18	0.13 T 0.00 0.31 0.00	1.36 0.02 0.08 0.25 0.20	0.06 0.22 0.39 0.08 0.23	0.98 2.13 1.54 0.37 1.00	0.98 1.97 1.68 1.66 1.35	0.75 1.68 0.76 0.85 0.69	3.09 5.39 3.00 1.65 1.48	0.08 0.79 0.29 0.01 0.11	0.98 1.95 1.11 0.46 0.83	0.60 1.40 0.30 0.43 0.46	1.05 1.97 1.18 1.09 0.64	2.64 2.98 3.14 2.28 0.19		
TULELAKE INSP STN	12.77	0.16	0.30	1.00	1.66	1.73	0.40	2.77	0.17	1.15	0.23	1.10	2.10		
SHASTA-SCOTT BIG SPRINGS 4 E Callaham Ranger Sta Etna Fort Jones 6 Ese Fort Jones Ranger St	09.85 16.07 21.05 16.15 16.56	0.00 T 0.10 0.06 0.11	0.00 0.01 0.12 0.44 0.08	0.30 0.14 0.15 0.13 0.07	1.17 2.16 1.36 1.68 1.37	0.75 4.25 6.35 3.60 4.60	0.90 1.21 1.40 1.21 1.28	1.67 4.95 8.55 5.51 6.21	0.42 0.23 0.22 0.29 0.38	0.61 0.72 1.58 1.52 1.46	0.55 0.06 0.10 0.10 0.11	1 • 1 3 0 • 90 0 • 4 3 0 • 6 3 0 • 2 7	1.44		
GAZELLE - EPPERSON GAZELLE 4MMW GREENVIEW LITTLE SHASTA Montague	12.44 09.42 17.97 12.77 11.11	0.00 0.02 0.18 0.50 0.02	1.48 0.68 0.00 0.00 0.02	0.12 0.11 0.10 0.33 0.23	1.19 1.00 1.41 1.27 1.13	1.86 1.48 5.47 1.85 1.94	1.04 0.93 1.38 1.23 0.95	3.57 2.77 7.02 3.55 3.92	00.0 80.0 08.0 00.0	1.14 0.62 0.65 1.35 1.04	0.36 0.08 0.00 0.06 0.11	0.30 0.46 0.31 0.59 0.46	1.38 1.19 0.65 2.04 1.29		
MONTAGUE 3 NE WEED 1 5 YREKA	_ 21.18 14.66	0.00 0.40 0.13	0.00 0.10 0.50	0.46 0.64 0.15	1.22 2.76 1.31	2.06 5.62 3.25	0.85 1.02 1.13	- 4.13 5.23	_ 0.36 0.42	- 1.71 0.93	0.03 0.50 0.15	0.59 1.93 0.50	1.60 2.01 0.96		
KLAMATH RIVER															
CECILVILLE SAWYER CLEAR CREEK COPCO DAM NO 1 FOOTHILL SCHOOL FORKS OF SALMON	33.05 52.89 17.68 17.65 36.40	0.11 0.00 0.01 0.10 0.00	0.08 0.00 0.08 0.40 T	0.00 T 0.22 0.05 T	6.05 1.65 1.29	10.04 16.08 3.76 3.23 10.53	3.86	5.19 18.75 5.42 4.99 13.01	- 0.40 0.41 0.18 0.26	5.01 1.90 1.10 3.65	0.33 0.10 0.69 0.37 0.39	1.28 0.96 0.71 0.97 0.90	1.51 0.68 1.80 3.75 0.74		
HAPPY CAMP RANGR STA HILTS Klamath Klamath River 1 Sw Cak Kholl Ranger Sta	47.24 15.94 74.20 22.52	0.00 0.13 0.33 0.10 0.15	T 0.02 T 0.02 0.08	0 • 15 0 • 40 1 • 76 0 • 19 0 • 33	2.03	14.32 5.05 19.79 5.72 6.37	0.91	15.13 4.58 22.50 	1.59 0.34 2.24 	4.47 1.40 8.96 	0.24 0.45 1.43 	0.62 0.47 1.68 	0.60 0.16 1.59 0.95		
ORLEANS SAWTERS BAR R S SEIAD VALLEY R S SOMESBAR IW TI BAR R S	47.77 38.20 38.99 34.41 54.30	0.15 0.00 T 0.38 0.03	0.00 T 0.02 T 0.00	0.13 0.07 0.12 0.11 0.21	4.84 3.75 5.86	13.77 11.33 12.09 15.02 15.89	2.89 2.73 4.27	15.12 12.54 13.32 	0.61 1.32 1.22 2.08 1.94	5.39 3.11 3.88 5.73 5.93	0.77 0.29 0.55 0.27 0.36	1.24 0.74 0.70 - 1.22	0.66 1.07 0.61 0.69 0.88		
TRINITY RIVER															
BIG BAR RANGER STA BURNT RANCH IS BURNT RCH HER S COFFEE CREEK RS FOREST GLEN	27.32 41.22 39.85 33.06	0.00 0.00 0.00 T	0.12	0.06	5.47 	9.55 10.66 9.26 13.38 16.33	3.32 2.38		0.45 1.36 1.28 0.22 0.68	2 • 30 4 • 47 3 • 90 3 • 02 4 • 36	0.37 0.86 0.89 0.06	0.83 1.55 3.46 1.13 2.56	0+38 0+87 0+59 2+07 0+47		
HAYFORK RANGER STA HIDDEN VALLEY RCH HOOPA 2 SE HYAMPOM	26.68 41.80 49.94 52.86	0.00 T 0.01 0.04 0.00	0.14 0.02 0.02 0.01 0.05	0.16 0.00 0.15 0.34 0.00	5.25 5.63 6.25	9.67 11.30 13.73 13.65 10.76	3.13 3.97 4.28	6.60 12.84 15.01 16.37 11.71	0.71 1.08 2.11 1.93 0.39	1+86 4+93 5+92 6+46 3+17	0.29 0.36 0.51 0.57 0.20	1 • 10 2 • 34 1 • 44 1 • 84 0 • 86	0.40 0.55 1.44 1.12		
SALYER RANGER STA TRINITY DAM VISTA PT WEAVERVILLE RANGER S	42.89 25.31 28.04	0+00 0+00 0+04	0+12 0+03 T	0.13 0.14 0.14	2.55	10.34 9.50 9.82	2.26	13.57 6.81 7.52	1.59 0.38 0.88	5.03 1.71 1.97	0.73 0.18 0.31	1 • 72 0 • 76 0 • 78	0.60 0.99 0.77		

TABLE A-2 (Continued) PRECIPITATION DATA FOR 1963-64 NORTH COASTAL AREA

		NORT	H COA	STAL	AREA	•								
Station	Precipitation in inches													
3101101	Seasan	July	Aug	Sept	Oct	Nav	Dec	Jan	Feb	Mar	Apr	May	June	
AD RIVER														
ARCATA A P BIG LAGOON BLUE LAKE BLUE LAKE REDWOOD CR FIELDBROOK 4 D RCH	44.27 57.25 52.03 57.90 70.74	0.30 0.18 0.00 0.11 0.02	0.07 0.96 0.04 0.00 0.01	0.62 0.00 0.57 0.42 1.20	7.43 6.00 6.44	9.02 13.51 10.93 17.69 15.15	3.47 4.37 1.94	13.21 16.73 15.71 14.68 28.72	2.29 2.65 2.76 3.39 3.06	5.80 6.42 6.39 7.08 8.01	0.62 1.49 1.14 1.60 1.42	1.44 2.30 2.36 3.05 1.60	1.33 2.11 1.74 1.61 1.90	
HONOR CAMP 42 Korbel Little River Mad River Ranger Sta Orick 3 NNE	78.33 48.31 63.42 49.98 70.21	0.26 0.07 0.26 0.00 0.51	0.12 0.03 T 0.05 T	0.80 0.78 1.01 0.03 1.00	5.58 8.00 5.97	20.19 9.07 12.48 13.89 17.75	3.75 4.93 4.27	24.26 15.71 19.20 16.82 21.93	2.85 2.08 3.72 0.43 1.96	8.24 6.00 7.96 4.75 9.49	2.05 1.15 1.88 0.87 0.75	2.07 2.13 1.94 2.17 2.99	2.57 1.96 2.04 0.73 2.20	
DRICK ARCATA REDWOOD DRICK PRAIRIE CREEK PATRICKS PT STATE PK	63.51 68.04 68.31	0.38 0.33 0.36	0.03 0.10 0.00	0.96 0.92 0.90	6.66	15.68 17.30 13.75	5.24	19.53 21.28 24.62	2.59 2.30 2.78	7.97 7.65 8.20	0.62 1.36 1.57	2.83 2.51 2.24	2.06 2.39 1.76	
EL RIVER														
AOANAC LODGE Alderpoint Branscomb 2 NW Bridgeville 4 NNW Bridgeville P O	53.29 40.30 64.38 61.61 50.06	0.03 T 0.02 0.00 0.02	T T 0.05 0.04 0.00	0.13 0.27 0.33 0.52 0.23	4.31 7.05 8.26	18.27 12.84 22.21 15.16 11.98	3.61 4.88 5.50	15.22 10.93 17.64 17.36 16.46	1.09 0.74 0.89 2.88 1.67	6.68 4.20 6.62 6.73 6.28	0.44 0.65 1.15 1.17 0.73	1.56 1.88 2.54 2.95 2.06	0.43 0.67 0.80 1.04 0.61	
BULL CREEK BURLINGTON ST PARK CEDAR CREEK HATCHERY COVELO COVELO EEL RIVER RS	54.98 51.29 52.42 29.27	0.08 0.00 0.01 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.33 0.23 0.09 0.03 0.06	9.19	15.18 15.27 18.39 9.95 9.42	3.22	14.20 13.48 15.07 9.30	1.64 1.56 1.15 0.49 0.47	7.63 5.63 5.57 3.24 3.25	1.31 0.67 1.08 0.39 0.32	0.64 1.51 1.69 	0.60 0.33 0.38 0.41 0.23	
CUMMINGS DOS RIOS EUREKA WB CITY FERNDALE 2NW FORTUNA	55.30 32.36 37.60 35.22 40.13	0.08 0.00 0.11 0.27 0.12	0.10 0.00 0.07 0.14 0.07	0.49 0.00 0.68 0.51 0.53		17.60 12.77 6.91 7.12 7.91	1.82 3.20 3.44	16.07 8.16 11.13 10.72 11.26	1.03 0.19 1.20 1.18 2.37	8.02 3.93 5.91 5.25 6.06	0.66 0.45 0.67 0.43 0.89	1.59 0.89 1.59 1.42 1.52	0.51 0.27 0.72 0.54 0.76	
FOX CAMP GARBERVILLE GARBERVILLE MAINTSTN GRIZZLY CRK REDWOOD HARRIS 7 SSE	59.13 45.46 31.13 44.68	0.00 0.00 0.00 T	0.00 0.00 T 	0.00 0.30 0.32	6.25	17.59 13.46 0.32 	2.95	14.09 13.84 12.68 	1.08 0.65 0.89 -	6.49 4.65 5.52 4.62	1.36 0.50 0.56 0.47	2 • 19 1 • 20 1 • 17 	-	
HARTSOOK INN HIGH ROCK HOLMES KNEELAND 10 SSE LAKE MOUNTAIN	51.72 48.61 44.07 	0.00 0.01 T 0.00 0.00	0.00 0.02 0.08 0.03 0.00	0.35 0.30 0.22 0.31 0.36	8.87 7.92 6.91	17.08 12.81 11.03 13.47 14.03	2.86 2.68 5.69	14.58 12.62 10.55 	0.76 1.66 1.94 1.27 0.59	5.03 6.53 6.99 8.40 5.17	0.78 0.83 0.67 1.76 0.55	1 • 81 1 • 6 8 1 • 5 7 2 • 6 7 1 • 7 9	0.42 0.42 0.42 1.48 0.85	
LAYTONVILLE MINA 3 NW MIRANDA SPENGLER RCH MYERS FLAT - CRANE	41.51 45.34 35.41 54.08	0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.81 0.50 0.20 0.24	5.85 5.65	15.39 14.50 11.81 15.35	3.56	11.33 10.26 9.40 15.13 13.81	0.63 1.22 0.59 2.05 1.24	4.62 4.71 3.91 5.89 5.38	0.40 0.90 0.04 0.55 0.46	0.87 2.72 0.77 1.27 1.47	0.31 1.12 0.20 0.47 0.38	
OLD HARRIS PHILLIPSVILLE 1SE RICHARDSON GROVE SCOTIA SHERWODD VALLEY	51.49 42.74 52.71 38.23 57.89	0.02 0.01 0.01 0.08 0.04	T T 0.02 0.00	0.22 0.30 0.11 0.36 0.07	6.62 6.81 5.66	17.06 13.42 17.42 8.70 18.66	3.41 3.18 2.65	13.82 10.37 16.28 9.59 16.30	0.68 0.86 0.64 1.68 1.10	5.93 5.95 5.32 6.11 6.09	0.67 0.57 0.56 0.86 0.97	1.18 0.70 2.00 1.65 2.52	0.96 0.53 0.38 0.87 0.94	
STANDISH HICKEY PARK WEOTT 25E WILLITS 1 NE WILLITS HOWARD RS WILLITS NW PAC RR	50.94 47.14 38.45 36.11 38.30	0.06 0.00 0.00 0.00 0.00	0.02 0.00 0.02 0.03 0.00	0 • 11 0 • 19 0 • 01 0 • 12 0 • 00	8.35 4.59 4.83	19.11 13.11 12.82 11.71 12.69	3.04 2.75 2.44	16.35 12.85 10.36 10.35 10.77	1.03 1.50 0.69 4.13 0.46	0 • 65 5 • 76 4 • 88 0 • 44 4 • 95	1.02 0.62 0.40 0.39 0.07	2.00 1.37 1.67 1.34 1.56	0.52 0.35 0.26 0.33 0.25	
WITTS RANCH ZENIA 1 SSE	- 50.84	_ 0.00	0.00	0•31 0•23	8.67	13.32 17.52		13.63 13.47		5.52 4.77	0.63 1.12	1.58 1.97	0•44 1•02	
ATTOLE RIVER														
CAPE RANCH ETTERSBURG 2 SE FERNDALE 8 SSW HONEYDEW 2 WSW HONEYDEW HUNTER	48.06 59.49 48.60 73.16 74.63	0.08 0.00 0.14 0.02 0.01	0.00 0.00 0.05 0.05	1.72	10.33 6.61 14.09	11.09 16.74 10.35 22.03 22.03	4.09 3.84 4.27	12.05 20.85 11.47 19.81 19.77	1.50 0.00 2.07 1.25 1.48	7.25 5.32 7.40 8.04 9.15	0.16 0.00 1.45 0.47 0.16	1 • 72 0 • 83 2 • 09 2 • 32 1 • 52	0.99 1.00 1.46 0.16 0.19	
MANN RANCH PETROLIA PETROLIA 4 NW SHELTER COVE UPPER MATTOLE	71.03 48.28 54.00 51.21 58.18	0.10 0.04 0.00 0.03 T	0.03 0.04 0.00 0.04 0.04	0.96 1.20 0.80	8.82	19.70 12.05 13.30 12.56 16.12	3.62 3.35 4.72	17.85 13.47 15.00 13.63 15.79	3.05 1.36 2.55 0.64 1.32	5.72 5.92 6.45 6.53 6.30	0.51 0.26 1.15 0.45 0.32	2.84 1.44 2.25 1.33 1.98	0.91 0.30 0.75 1.79 0.25	
WHITETHORN	68.23	0.12	т	0.27	12.33	19.70	4.97	20.31	1.26	6.74	0.16	1.75	0.62	

TABLE A-3 TEMPERATURE DATA FOR 1963-64 NORTH COASTAL AREA

	Station	Temperature in Degrees Fahrenheit													
Number	Nome		Seasan	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Ju
Humber								L	L	L	L			1	
F5-0901	ØLUE LAKE	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	82 62•4 54•0 45•6 28	82 68.4 61.9 55.4 48	70 67.6 60.2 52.9 46	82 70.2 61.5 52.8 44	74 65.1 57.4 49.8 34	63 59.2 52.1 45.0 32	75 56.7 48.2 39.8 29	62 52.0 45.6 39.2 29	77 61.0 47.8 34.6 28	68 56.5 48.3 40.1 28	66 61.1 50.8 40.6 28	71 63•6 54•9 46•2 32	80 67 59 50 43
F4-1215-15	BURNT RCH HMS	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM						58 52.0 46.5 41.0 31	65 52•1 43•6 35•1 30	67 46.6 40.8 34.9 30	72 60.8 45.8 30.8 25	79 57.1 46.2 35.2 28	82 67.7 52.2 36.8 32	83 69•1 55•1 41•1 33	93 75 81 47 41
F6-1608	CEDAR CREEK HATCHERY	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	103 67.4 54.6 41.8 25	102 83.5 85.9 48.3 40	98 85.6 67.6 49.5 41	100 84.4 67.6 50.7 43	92 67.3 57.4 47.4 35	68 55.8 48.8 41.8 31	59 51.8 44.2 36.6 28	55 47.9 41.5 35.1 28	74 61.3 46.2 31.2 25	80 58.9 46.8 34.8 28	87 66.7 51.5 36.3 31	83 68•5 55•2 42•0 31	103 76 82 47 40
F3-1990	COPCO DAM NO 1	MAXIMUM AVG•MÄX• AVERAGE AVG•M1N• M1NIMUM		100 87.8 70.8 53.8 43		100 88.2 71.4 54.7 47	93 69.3 56.4 43.6 30	65 51.5 44.0 36.6 26	58 47.3 38.3 29.3 20	51 43.0 35.6 28.3 21	65 55.0 41.2 27.4 21	76 55.7 43.0 30.3 22	84 66.9 50.9 34.9 28	87 72•8 57•2 41•6 26	98 79 64 49
F1-2480	DORRIS INSPECT STA	MAXIMUM AVG•MAX• AVERAGE AVG•M1N• MINIMUM	90 59•0 44•5 30•0 2	89 78.6 60.0 41.5 26	90 79.8 61.4 43.0 32	88 77.3 59.8 42.4 30	84 62.4 48.1 33.8 16	62 48.6 38.1 27.6 16	52 44.4 32.2 20.1 2	54 39.0 28.0 17.0 2	50 41.6 28.6 15.7 8	66 47.4 34.6 21.9 10	74 55•4 39•4 23•4 17	79 62.8 47.6 32.4 18	88 70 55 40 29
F 5~3041	FIELDOROOK 4 D RCH	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	87 - - 28	81 71.9 60.8 49.7 44	75 71.9 61.2 50.6 45	87 73.6 62.1 50.6 47	76 68.8 57.8 46.8 33	65 60.1 50.6 41.2 30	61 56.0 45.4 34.7 28	59 51.4 43.9 36.4 29			68 61.3 49.1 36.9 30	69 62+2 52+4 42+5 33	79 69 59 49 45
F6-3322-01	GARBERVILLE MAINTSTN	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	102 71.1 56.8 42.4 26	102 89.5 68.4 47.4 40	98 92.6 71.0 49.5 44	90 83.4 66.6 49.8 39	85 70.6 58.1 45.6 38	90 83.4 66.6 49.8 39	60 50•2 43•6 37•1 33	69 51.5 43.6 35.7 30	72 60.8 45.8 30.8 26	80 59•7 48•0 36•2 28	78 63.8 51.2 38.5 33	85 67.9 54.8 41.7 36	100 80 63 47 42
F2-3363	GAZELLE LOOKOUT	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM		88 79•2 64•2 49•2 40	89 81.0 66.7 52.4 42	90 78.0 65.9 53.8 38									
F1-3564	GRASS LAKE HWY M 5	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	88 56.9 42.3 27.7 -2	84 74.0 57.0 39.9 34	88 77.7 59.5 41.3 32	85 74 • 3 56 • 8 39 • 2 32	73 59.2 45.6 32.1 20	58 47.1 37.2 27.3 20	55 45.9 33.2 20.5 5	49 40•4 28•2 15•9 -2	59 47.2 29.7 12.2 5	60 44.7 31.6 18.4 8	71 52.2 38.6 24.9 20	69 55•1 40•8 26•6 15	82 65 49 34 29
F4-3949	HIDDEN VALLEY RCH	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM			96 87.3 69.4 51.4 44	98 84.7 68.0 51.4 44	90 64•0 56•0 47•9 32	60 51.3 46.3 41.3 30	55 47.5 41.0 34.5 25	50 44.5 38.6 32.7 26	64 55.0 42.4 29.7 25	76 57•7 45•7 33•7 27	83 68.3 51.8 35.2 30	86 72.5 57.4 42.2 32	98 78 63 48 42
F6-4037-02	HOLMES	MAX1MUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	98 65•3 55•2 45•1 27	86 75.8 64.2 52.6 43	86 73.9 63.5 53.1 46	98 78.0 65.3 52.6 46	87 69.2 60.2 51.3 40	67 57.0 51.1 45.2 36	67 54•4 47•6 40•8 34	60 52.2 44.8 37.5 33	75 60.6 47.9 35.2 27	80 59.9 48.7 37.5 29	71 63.3 51.8 40.4 32	80 67•8 56•2 45•4 37	86 71 60 49 44
F5-4077	HONOR CAMP 42	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	89 60•1 49•6 39•0 26	84 69•4 57•0 44•5 37	80 71.7 58.6 45.4 38	89 73.5 61.0 48.6 42	87 61.6 53.1 44.6 35	69 53.6 46.4 39.3 30	72 57•3 47•8 38•2 30	59 47.9 40.3 32.8 29	70 58•4 45•6 32•9 26	71 51.4 41.3 31.2 26	70 55.7 44.0 32.2 27	70 57•5 46•9 36•3 28	89 63 52 42 36
F0-4202	IOLEWILD MAINT STN	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	96 64•8 51•5 38•2 20	92 80•1 61•7 43•3 36	88 80.0 61.8 43.7 40	94 80.6 63.1 45.6 40	82 65.9 54.8 43.6 42	56 50•7 43•0 35•3 26	64 47.8 39.0 30.2 22	60 45•4 38•5 31•6 28	62 53.5 40.4 27.3 20	74 53.7 42.2 30.8 24	82 67•2 51•7 36•2 32	86 74•1 58•2 42•2 32	96 78 63 48 42
F3-4583	KLAMATH RIVER 1 SW	MAXIMUM AVG•MAX• AVERAGE AVG•MIN• MINIMUM	97 - - -	94 84.5 68.2 52.0 43	97 86.9 70.3 53.7 46	96 85.5 68.4 51.3 44	89 67.8 57.0 46.1 31	66 55.3 47.6 39.8 30							
F5-4602	KORBEL	MAXIMUM AVG.MAX. AVERAGE AVG.M1M. MINIMUM				82 75.7 64.0 52.3 47	77 67•4 58•4 49•3 37	66 58.9 50.5 42.1 32	66 55•4 47•4 39•4 31	63 52•4 45•0 37•5 30	75 60.9 48.0 35.2 30	75 58.6 48.0 37.3 30	70 62.8 50.5 38.2 32	75 64•4 55•0 45•6 33	86 71 60 50

TABLE A-3 (Continued) TEMPERATURE DATA FOR 1963-64 NORTH COASTAL AREA

	Station	Temperature in Degrees Fahrenheit													
lumber	Nome		Season	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Moy	June
2-5783	MONTAGUE	MAXIMUM AVG.MAX. AVERAGE	100 65.6 50.1	98 86.5 67.6	100 89.0 69.0	97 85.3 66.0	91 66.2 52.4	65 51.6 41.4	57 46•1 35•0	54 42.1 33.0	60 51.6 35.8	73 54+9 40+5	83 64.3 46.2	85 71.5 53.2	97 78.3 61.4
		AVG.MIN. MINIMUM	34.6 11	48.7 38	48.9 41	46.6 36	36.5 21	31.0 19	23.8 11	23.9 15	20.1 12	26.1 16	28.1 19	34+8 20	44 • 5 36
6-6408	OLD HARRIS	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	100 67.6 54.6 41.6 25	100 82.1 65.2 48.2 40	99 85.4 67.4 49.5 40	99 80.8 66.6 52.5 40	84 64.6 54.8 45.1 38	68 54.8 46.9 39.0 30	70 58.3 48.9 39.5 26	60 51.2 42.2 33.2 27	79 63.6 49.6 35.7 28	76 57.3 45.8 34.4 25	84 67.8 52.6 37.3 29	62 69.0 52.2 35.4 30	100 76.6 62.9 49.2 38
5-6498	ORICK PRAIRIE CREEK	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	86 60+4 51+3 42+1 24	83 69•4 58•2 46•9 39	75 68.5 58.6 48.7 40	85 72.9 61.2 49.4 43	74 65.5 56.2 46.8 37	64 56.2 49.8 43.3 36	63 50•4 44•3 38•2 24	56 50.5 43.6 36.6 31	72 58.2 46.0 33.8 27	65 54•2 45•0 35•9 29	62 56.1 46.2 36.3 30	70 59•3 51•2 43•0 31	86 63.9 55.0 46.2 38
3-6083-01	SETAD VALLEY R S	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	105 67.4 53.3 39.1 22	103 87.2 68.0 48.8 40	105 90.4 69.9 49.4 41	10] 88.0 67.4 46.6 41	94 68.1 56.2 44.3 32	64 51.1 44.7 38.3 28	57 48.0 39.7 31.4 22	52 43•6 37•6 32•0 29	69 56.8 41.7 26.6 20	73 55.9 44.0 32.0 26	84 67.4 50.0 32.5 25	89 72.1 56.2 40.4 33	100 60.5 63.8 47.2 39
0-8311-02	SMITH RIVER 7 SSE	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	86 - 30	82 70.0 61.0 52.1 46	74 69.0 61.5 54.0 48	72 68.0 60.6 53.1 48	74 65.8 57.6 49.3 38	68 58.5 51.1 43.7 36	64 56•0 46•0 37•1 32	58 51.9 44.4 37.0 32	74 60•0 47•4 34•7 30	66 54•0 44•6 35•1 32	62 56.1 45.1 36.1 34		86 65 • 1 57 • 2 49 • 2 46
6-8490	STANDISH HICKEY PARK	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	90 - - 29	90 75.9 63.4 50.9 44	90 79.3 65.8 52.2 44	90 76.0 63.6 51.1 46	80 64.5 56.0 47.4 38	60 54.9 47.9 40.9 32	56 51.7 44.1 36.5 30		70 58.0 45.5 33.0 29	70 54.2 44.6 34.9 30	80 61.0 51.0 39.2 34	74 62+2 52+6 42+9 36	90 70.2 59.4 48.7 42
1-9057	TULELAKE INSP STN	MAXIMUM AVG.MAX. AVERAGE AVG.MIN. MINIMUM	44.2		93 82.3 62.4 42.5 34	91 78.3 60.8 43.3 31	85 64.4 49.6 34.9 21	63 47.6 37.6 27.7 15	64 46•4 34•4 22•5 2	56 37•4 27•1 16•8 5	49 40.7 26.2 11.6 6	69 44.5 30.8 17.2 9	73 56.4 40.4 24.4 11	79 62•5 46•2 30•0 17	54 . 6

TABLE A-4 EVAPORATION DATA FOR 1963-64 NORTH COASTAL AREA

NUMBER	STATION NAME		JUL	AUG	SEP	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JU
F6-3030	Ferndale 2 NW	Evop.	5.31	3.81	3.65	1.93	1.45	0.78	0.70	1.80	2.32	3.42	3.91	4.
		Wind Movement	1066	932	1022	1240	1664	1271	1736	1137	1191	1143	1193	9
		Water Temp. Avg. Mox.	83.3	78.5	79.4	68.9	59.9	55.1	53.1	60.6	64.9	70.8	74.4	78
		Water Temp. Avg. Min.	58.5	58.0	57.3	52.3	46.6	42.4	41.0	41.2	43.8	47.2	50.9	55
F3-4581-36	Klamath Falls (Airport)	Evop.	9.86	8.43	6.80	-	-	-	-	-	-	-	7.44	6.8
		Wind <u>Movement</u> Woter Temp Ava, Max,												-
		Water Temp. Avg. Min.												
F6-4697	Lake Pillsbury No. 2	Evop.	-	-	-	-	-	~	-	-	3.33	5.03	6.31	7.0
		Wind Mavement	-	-	-	-	-	-	-	-	737	998	969	8
		Water Temp Avg. Max.	-	-	-	-	-	-	-	-	58.9	72.3	78.4	82
		Water Temp Avg. Min.	-	-	-	-		-	-	-	39.2	44.6	49.6	55
F4-4921	Lewiston	Evop. Wind	8.71	8.68	6.33	2.53	0.58	0.03			-	3.66	6.28	4.
		Movement Woter Temp Avg. Max.				-								
		Water Temp Avg. Min.												\vdash
F4-9024	Trinity Dam Vista Point	Evop. Wind	9.71	8.91	5.99	2.16	0.48	-	-	-	-	-	6.14	7.
		Movement Woter Temp Avg. Mox.	-	1262	1410	1197	990	856	-	-	-	1481	1451	13
		Water Temp Avg, Min,												$\left \right $
F1-9053	Tulelake	Evop. Wind	9.86	8.43	6.80	3.66	-	-	-	-	-	-	7.44	6.
		Movement Woter Temp Avg. Max.	1											-
		Woter Temp Avg. Min.				1	<u> </u>							

TABLE A-5 STORAGE GAGE PRECIPITATION DATA FOR 1963-64 NORTH COASTAL AREA

	:	:			1963 - 64 Se	ason		_
Station	: Agency	:		:	Date :	Pre	cipitation	
	:	:	Charged	:	Measured :	i	n Inches	
Beswick 7 S	US Weather Bureau		7/26/63		7/18/64		44.34	
Blue Creek Mountain Lookout	To be published in Bulletin No. 130-65							
Boardcamp Mountain	DWR Northern Branch		9/21/63		6/30/64		97.45	
Bray 10 WSW	US Weather Bureau		7/26/63		7/18/64		25.48	
Camp Six Lookout	DWR Northern Branch		9/20/63		6/30/64		88.57	
Crowder Flat	DWR Northern Branch		7/3/63		7/8/64		16.72	
Gazelle Lookout	DWR Northern Branch		5/16/63		7/1/64		14.67	
Long Bell Station	DWR Northern Branch		7/4/63		7/10/64		20.31	
Medicine Lake	US Weather Bureau		7/25/63		7/17/64		37.50	
Mumbo Basin	DWR Northern Branch		6/26/63		7/1/64		40.68	

APPENDIX B

SURFACE WATER FLOW

SURFACE WATER FLOW

The Surface Water Measurement Program is a long-term, continuing, basic data activity of the Department, providing accurate measurements of water stages and corresponding streamflow discharges.

The program incorporates both field and office activities. The field activities include the installation and maintenance of gaging stations as well as the actual measurement of streamflow. The office work includes the preparation of data for computation by machine methods. This consists of developing a rating curve for each streamflow station from a series of instantaneous discharge measurements, and a related formula. Manual computation of discharge is required when the direct stage-discharge relationship has been destroyed by ice forming on the control or by backwater from a tributary or control structure downstream.

Definition of Terms

The following terms are commonly used:

<u>Cubic foot per second</u> is the unit rate of discharge of water. It is a measure of a cubic foot of water passing a given point in one second.

<u>Acre-foot</u> is the quantity of water required to cover one acre to a depth of one foot. It is equivalent to 43,560 cubic feet or 325,850 gallons.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, which is enclosed by a drainage divide.

Water year is the 12-month period from October 1 of one year through September 30 of the subsequent year and is normally designated by the calendar year in which it is terminated.

-23-

Explanation of Streamflow Tables

The data shown in Table No. B-l have been determined from observations during the current year by Department personnel. Measurement procedures which have been employed are consistent with those used by the U. S. Geological Survey.

Accuracy of the flow records range between "excellent" (less than 5 percent error) and "good" (less than 10 percent error). The records of monthly and seasonal mean discharge and runoff are generally more accurate than the daily flow records.

When flows at a single station are in excess of 140 percent of the highest measurement on the rating curve, the computed daily mean discharges from the electronic computer are shown as "estimates". Normally, the rating is good where there is a fixed channel and flow regimen at the station. The rating varies where aquatic growth or shifting sands are present. Where the rating is not permanent more frequent measurements of discharge are necessary.

Locations of individual measurement stations are given in the tables of flow. Location numbers have been assigned in accordance with the Department's "Hydrologic Procedures Manual".

The location number is a six-digit number. The first letter designates the hydrographic area; the first number the river basin; the second number the reach of the stream. The last three numbers are sequence numbers assigned to a specific station. The sequence numbers begin at the downstream end of the reach.

The streamflow tables are arranged in a downstream order. Stations on a tributary entering between two main stem stations are listed between

-24-

those stations and in downstream order. A stream gaging station normally derives its name from the stream and the nearest post office (e.g., Weaver Creek near Douglas City).

An automatic water stage recorder is in operation at all of the Department's gaging stations in the North Coastal Area.

Following are the significant figures used in reporting streamflow data, consistent with the accuracy of measurements obtained:

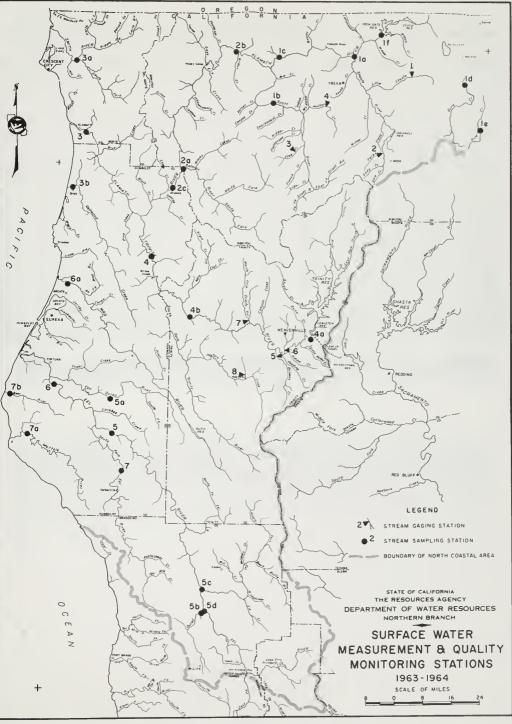
1.	Daily flow	-	Cubic feet per second
	0.0 - 9.9 10 - 99 100 - above		Tenths 2 Significant figures 3 Significant figures
2.	Mean flow	-	Cubic feet per second
	0.0 - 99.9 100 - 999 1000 - above		Tenths 3 Significant figures 4 Significant figures

The water year totals reported to a maximum of four significant figures.

Station descriptions and historical data are provided at the bottom of each table of flow. Gage heights are in feet above assumed "local" datum planes.

The eight surface water measurement stations measured by the Department in the North Coastal Area are located on Figure B-1.

-25-


INDEX TO GAGING STATIONS

- 1 Little Shasta River near Montague
- 2 Shasta River at Edgewood
- 3 Etna Creek near Etna
- 4 Moffett Creek near Fart Jones
- 5 Browns Creek near Douglas City
- 6 Weaver Creek near Douglas City
- 7 North Fork Trinity River at Helena
- 8 Big Creek near Hayfork

INDEX TO SAMPLING STATIONS

- la Shasta River near Yreka
- 1b Scott River near Fort Jones
- 1c Klamath River above Hamburg Reservoir Site
- 1d Butte Creek near MacDoel
- 1e Antelope Creek near Tennant
- 1f Klamath River belaw Iran Gate Dam
- 2a Salmon River at Somesbar
- 2b Klamath River near Seiad Valley
- 2c Klamath River at Orleans
- 3 Klamath River near Klamath
- 3a Smith River near Crescent City
- 3b Redwood Creek at Orick
- 4 Trinity River near Hoopa
- 4a Trinity River at Lewiston
- 4b Trinity River near Burnt Ranch
- 5 Eel River near McCann
- 5a Van Duzen River near Bridgeville
- 5b Outlet Creek near Longvale
- 5c Eel River, Middle Fork at Dos Rias
- 5d Eel River near Dos Rios
- 6 Eel River at Scotia
- 6a Mad River near Arcata
- 7 Eel River, South Fork near Miranda
- 7a Mattole River near Petrolia
- 7b Bear River near Capetown

TABLE B-I

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME

F21700 SHASTA RIVER AT EDGEWOOD 1964

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	13	29	71	76	82	49	37	23	48	15	4.4	9.0	
2	12	29	70	75 *	76	47	34	26	49	15	4.6	8.2	2
3	12	30	72	70	73	46	32	29	50	14	4.4	8.0*	
4	13	34	71	70	72	47	30	31	51	14	4.5	8.3	4
5	14	81	72	66	70	47	30	29	53	14	4 • 2	6.3	5
6	16	88	71	70	68	47	28	32	81	14	4.0	7.5	6
7	15	70	68	69	68	45	27	29	103	12	4.0	8.7	7
8	14	83	69	66	68	43	26	27	132	11	3.8	8.7	1
9	15	99	69	67	66	45	26	26	98 *	21	3.9	8.3	9
10	17	76	63 *	69	67	43	24	26	86	10	4 • 0	8.0	10
11	50	68	59	66	66	47	23	26	81	9.8	3.6	7.7	11
12	33	65 ×	60	68	64	47	21	24 +	71	9.5	3.1	8.1	12
13	28	78	61	68	64	46	20	26	68	9.1	2.7	8.6	12
14	26	328	61	68	61	47	19	25	64	8.6	3.6	9.3	14
15	25 *	192	61	65	60	47	20	25	62	8.2	4.0	9.2	15
16	25	129	60	67	60	45	20	26	58	7.8	5.4	8.6	16
17	25	107	62	69	58	40	22	30	56	7.8	5.5	7.5	17
18	24	96	60	69	57	39	22	30	51	7.6	3.7	7.7	18
19	25	130	60	91	57	35	21	31	48	8.2	4.7	7.7	19
20	25	105	62	503	57	33	20	34	44	7.8	5+0	8.1	20
21	25	91	61	141	55	34	20	37	38	7.6	3.9	7.9	21
22	27	86	61	101	55	35	20	36	36	7.2	4+7	7.0	22
22	35	107	58	90	54	34	21	36	30 +	6.8	5.5	6.6	23
24	31	94	57	83	53	36 *	20	37	23	6.4	4.3	6.5	24
25	28	83	57	88	51	34	20	40	20	5.7	4.6	5.8	25
26	27	84	59	83	48	32	20	42	20	5.5	4.8	4.6	26
27	26	83	63	81	47	32	21	59	21	5.6	5.7	5.5	27
28	26	80	103	78 *	48	31	20	66	20	5.1*	5.5	6.3	28
29	28	77	94	79	48	31	21	57	18	5.0	5+3	6.3	29
20	27	75	82	78		31	22	51	17	4.6	7.2	7.3	20
21	28		79	77		32		48		4.6	8.6		21
MEAN	23.7	92.6	67.0	90.7	61.1	40.2	23.6	34.3	53.2	9.0	4.6	7.6	MEA
MAX.	50.0	328	103	503	82.0	49.0	37.0	66.0	132	15.0	8.6	9.3	MA
MIN.	12.0	29.0	57.0	65.0	47.0	31.0	19.0	23.0	17.0	4.6	2.7	4.6	MI
AC. FT.	1458	5508	4118	5576	3517	2473	1402	2110	3168	552	284	451	AC.1

E - ESTIMATED NR - NO RECORO * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E ANO *

MEAN		MAXIMU				C	MENIM			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.	DAY	TIME
42.2	901	5.35	1	20	0330	2.0	1.94	8	24	1850

TOTAL ACRE PEET 30620

(LOCATIO	4	MA	KIMUM DISCH	ARGE	PERIOD	OF RECORD		DATU	M OF GAGE	
LATITUOE	LONGITUDE	1/4 SEC. T. & R.		OF RECORD		OISCHARGE	GAGE NEIGHT	PERIOD		ZERO	REF.
LATITOOE	LONGITUDE	M.D.8.&M.	CFS	GAGE NT.	DATE		ONLY	FROM	TO	GAGE	DATUM
41 28 20	122 26 18	SE20 42N 5W	2520 E	7.37	10/12/62	MAR 61-DATE	MAR 61-DATE	1961		0.00	LOCAL

Station located on downstream side of Edgewood Road bridge, 1.2 miles north of Edgewood. Tributary to Dwinnell Reservoir. Stage-discharge relationship at times affected by ice.

WATER YEAR STATION NO. STATION NAME F21300

1964

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	3.2 E	3.1	4.0	7.2	27	13	70 #	40	38	17	8.0	5.0	1
2	3.1 E	3.0	3.8 E	8.0*	22	12	42	36	38	16	7.2	4.7	2
3	3.3 E	3.0	3.4 8	5.4	17	12	33	34	37	15	6.7	4.4=	3
4	3.3 E	3.6	3.8 E	4.4	19	36	36	31	40	16	6.5	4.0	4
5	3.3 E	4.5	3.6	4.4 E	20	32	38	30	37	16	6 • 2	3.8	5
6	3.4 E	4.0	4.1	4.9	16	20	32	29	69 E	15	6 • 2	4 • 2	6
7	3.4 E	3.5	3.8 E	5.5	15	17	37	29	106 E	14	6+1	3 • 9	7
8	3.4 E 3.6 E	9.8 17	4.1	4.3	14	16	50	29	83 E	13	5.3	4.1	
9	3.3 E	6.2	3.6	5.3 4.8	15 17	17 15 *	52	35	89 #	13	5.4	4 • 2	9
10		0.2	1.9 #	*•0	17	15 -	47	40	64	13	5.6	3.8	10
11	3.3 E	4.3	1.2 E	5.0 E	16	14	54	42	52	13	5.4	3.7	11
12	3.4 E 3.4 E	4.2	2.0 E 2.0 E	5.0 B	14	12	51	46 *	46	12	5.6	3.6	12
13	3.3 E	16	2.0 E 2.0 E	5.0 B	12	12	51 57 Ε	46	42	12	5.4	3.3	13
14	3.3 #	10	2.0 E	5.1 5.0 E	12	12 17	57 E 65 E	44	38 39	12	5.0	3.2	14
15	5.5 1			2.U A	11	17	65 E	44	39	12	5•0	3.5	15
16	3.3	6.3	2.0 E	5.4	10	22	62 E	42	37	11	4.9	3.5	16
17	3.1	5.5	2.0 E	4.5	9.8	32	48	43	39	9.7	5+0	3.6	17
18 [3.1	5.2	2.0 E	3+9	12	34	42	43	35	9.7	4.6	3.7	18
19	3.3	4.8	3.9	7.1	15	30	40	44	32	9.5	4.5	3.6	19
20	3.3	4.2	4.5	49 E	16	27	40	44	30	9.3	4.4	3.8	20
21	3.1	3.7	3.9	17	17	22	43	43	28	9.0	4.3	3.6	21
22	4.5	3.8	3.8	12	19	19	41	42	26	8.1	4.5	3.3	22
23	5.8	4.8	3.8	9.4	19	17	34	40	25 +	6.3	4.4	3•3	23
24	3.7	5.5	3.7	8.6	20	16	30	40	24	7.9	4.5	3.6	24
25	3.7	5.5	3.6	9.2	17	15	26	40	22	7.8	4.5	3.4	25
26	3.7	5.6	3.4	11	15	16	29	39	20	7.6	4.5	3.0	26
27	3.3	6.3	5.9	11	15	20	35	46	20	7.0	4.5	3+2	27
28	3.1	5.0	20	10	15 *	33	46	51	19	7.3	4.5	3.1	28
29	3.3	4.6	15	11	13	41	52	43	17	9.4	4.5	3.0	29
20	3.4	4.4	10	12		44	43	41	17	9.5	4.5	3.0	30
31	3.4		8.6	14		44		39		7.4	4.5		31
MEAN	3.5	5.8	4.6	8.8	15.9	22.2	44.2	39.8	40.3	11.2	5.2	3.7	MEAP
MAX.	5.8	17.0	20.0	49.0E	27.0	44.0	70.0E	51.0	106 E	17.0	8.0	5.0	MAX
MIN.	3.1	3.0	1.2 E	3.9	9.8	12.0	26.0	29.0	17.0	7.0	4.3	3.0	MIN
AC. FT.	212	343	280	544	912	1367	2630	2450	2398	690	322	218	AC.FT

E - ESTIMATED NR - NO RECORD • - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND *

MEAN		MAXIMU						MINIM			
DISCHARGE	DISCHARGE	GAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME
17.0	147 E	3.17	6	7	0430	ļ	0.5	1.51	12	7	1110

LITTLE SHASTA RIVER NEAR MONTAGUE

TOTAL ACRE FEET 12370

24

	LOCATIO	N	AK	XIMUM DISCH	ARGE	PERIOD 0	F RECORD	DATUM OF GAGE			
LATITUDE	LONGITUDE	1/4 SEC. T. & R.		OF RECOR	Q	DISCHARGE	GAGE NEIGHT	PER	RIOD	ZERO	REF.
LATITUDE	LONGITUDE	M. D. 8. &.M.	CFS	GAGE NT.	DATE	Discinator	ONLY	FROM	TO	GAGE	DATUM
41 45 11	122 17 58	NW15 45N 4W	741 E	4.76	11/13/57	28-NOV 51 8 APR 52-APR 55	28-NOV 51 8 APR 52-APR 55	1956		0.00	LOCAL
						SEP 56-DATE	SEP 56-DATE				

Station located south of Ball Mountain Road, 12 miles northeast of Montague, 16 miles southwest of Macdoel. Stage-discharge relationship at times affected by ice. Drainage area is 48.1 square miles.

8 - Irrigation season only

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME

F25620 1964 ETNA CREEK NEAR ETNA

AY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	D
	2.1*	5.6	47	71	86	44	88 *	114	128	22	8.7	5.0	
2	1.6	6.2	44	63	74	39	74	101	120	21	8.3	4.2	
3	1.8	7.4	41	55	67	38	66	92	112	21	7.3	3.5	
A L	2.3	20	38	50	63	42	65	83	118	23	6.6	2.9	
5	4.2	19	37	46	63	42	67	77	125	20	6 • 4	2.7	
6	6.8	24	50	48	60	40	63	71	130	18	6.0	2.6	
7	4.0	21	42	47	58	38	66	68	118	16	5.5	2.4	
8	3.7	374 E	4 4	42	56	37	77	71	101	16	5.7	2.4	
9	3.8	200	40	41	55	37	88	85	92 *	14	5.4	2.3	
0	3.9	89	36 *	38	55	36 *	85	111	88	13	5.2	2.4	1
n	7.6	61	33	36	54	39	88	130	85	12	4.7	2.1	1
2	4.9	46	32	34	50	37	92	155 *	84	12	4.5	2.1	
3	4.3	42	31	34	48	35	97	161	84	11	4.9	2 • 1	
4	4.0	182	30	32	46	35	108	148	82	12	5.0	2+0	
5	5.3	130	29	31	44	35	126	149	76	12	4.9	1.9	
6	5.4	88	27	37	43	35	126	148	69	12	5 • 0	1.9	
7	4.5	71	27	36	40	39	112	141	61	13	4.6	1.9	
8	4.1	58	26	35	39	43	104	147	56	13	4.4	2 • 1	
9	3.8	54	28	53	40	44	98	169	50	13	4 • 3	1.8	
20	3.9	46	34	108	40	46	97	170	47	12	4 • 4	2.1	1
11	5.2	40	28	68	41	46	103	153	44	11	4 • 2	2.1	
22	12	45	27	52	42	43	101	141	42	11	3.8	1.9	
3	12	126	27	45	44	40	91	139	41	9.5	3.7	1.6	
24	7.8	92	26	43	45	39	82	145	39	8.4	3.5	1.6	
s	15	72	26	49	44	38	78	147	36	8.1	3.4	1.4	
26	8.7	77	32	48	43	37	84	131	33	7.8	3.5	1.4	
27	7.3	79	60	45	43	39	99	117	30	7.3	3.6	1.5	
28	6.5	70	109	42	43	44	133	109	28	7.5*	3.4	1.5	
29	6.7	61	102	48	41	55	151	112	26	8.1	3.7	1.4	
20	6.0	53	86	49		67	131	116	24	7.8	3 • 8	1.5	
21	5.7		77	60		79		130		7.9	4.3		
AN	5.6	75.3	42.5	47.9	50.6	42.2	94.7	124	72.3	12.9	4.9	2+2	M
AX.	15.0	374 E	109	108	86.0	79+0	151	170	130	23.0	8 • 7	5.0	N
AIN.	1.6	5.6	26.0	31.0	39.0	35.0	63.0	68.0	24+0	7.3	3 • 4	1.4	- A
C. FT.	347	4481	2610	2947	2910	2594	5633	7599	4302	794	303	132	A

E - ESTIMATED NR - ND RECORD * - DISCNARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND *

MEAN		MAXIMU				MINIMUM							
DISCHARGE	DISCHARGE	OAGE HT.	MO.	DAY	TIME	1	DISCHARGE	GAGE HT.	MO.	DAY	TIME		
47.7	634 E	9.76	11	8	1750		0.9	6.17	9	25	2010		
						ſ							

TOTAL ACRE FEET 34650

\square	LOCATIO	н	MA	XIMUM DISCH	ARGE	PERIOD	OF RECORD		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECORD		DISCHARGE	GAGE NEIGHT	PERIOD		ZERO	REF.
LATTODE	LONGITODE	M.D.8.8.M	CFS	GAGE HT.	DATE	DISCHARGE	ONLY	FROM	то	GAGE	DATUM
41 25 53	122 54 57	NEG 41N 9W	4040 E	10.87	2/8/60	SEP 50-JUN 55 JUN 56-DATE	SEP 50-JUN 55 JUN 56-DATE	1957		0.00	LOCAL

Station located south of Savyers Par-Etns Highway, 2.1 miles southwest of Etna. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Flow influenced by upstream diversion dam of Town of Etna. Drainage area is 20.1 square miles.

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	0.7	2.9 E	8.2	8.9	38	20	35 *	15	3.2	2.7	0.0	0.2	1
2	0.7	2.9 E 2.9 E	6.5	7.8*	39	20	34	15	2.7	3.4	0.0	0 • 1	2
3	0.9	2.9 E	6.0	7.6	39	19	33	16	2.2	3.9	0+0	0.2	3
4	1.1	2.9 E	5.8	8.1	37	19	31	16	2.5	4.8	0.0	0 • 1	4
5	1.1	2.9 E	6.0	8.1	37	20	31	16	2.9	4.2	0.0	0 • 1	5
6	1+1	2.9 E	5.2	7.8	35	20	30	15	3.2	3.1	0.0	0.1	6
7	1.1	2.9 E	5.2	7.9	33	20	28	16	3.2	2.5	0.1	0.3	7
8	1.0	2.7 E	5.4	7.9	32	19	27	16	4.0	2.6	0 • 2	0 • 3	8
9	8.0	2.7 E	5.8	7.9	30	19	28	14	4.2*	2+5	0.1	0.3	9
10	0.8	2.7 E	5.5	8.1	30 *	19	28	13	4.8	2.4	0.1	0.3	10
11	1.4	2.7 E	5.4	7.9	29	20	27	12	4.6	2.4	0.0	0.6	11
12	1.2	2.8 #	4.7	7.8	28	20	27	11	4.6	2.7	0.0	0.3	12
13	1.1	2.9	4.7	8.1	27	20	26	10	4.7	2.3	0.0	0.1	12
14	1 • 2	4.5	4.5	8.1	25	20	25	9.6	4.6	2.1	0.0	0.1	14
15	1.7*	4.8	4.6	8.1	25	21	24	9.4	4.9	2.3	0.0	0.1	15
16	1.7	4.8	4.5	9.3	24	21	23	9.3	4.6	2.2	0.0	0.2	16
17	1.3	5.3	4.8	12	23	22	19	9.1	4.8	1.8	0.1	0.6	17
18	1.8	5.3	5.0	15	22	23	17	8.4	5.0	1.9	0.1	0.8	18
19	1.8	5.2	4.8	32 E	22	24	18	7.7	5.0	2.0	0.1	0.4	19
20	1.7	5.0	5.0	229 E	22	25	20	7.4	4 • 6	2.4	0 • 2	0 • 3	20
21	1.9	5.0	5.0	110 E	21	26	20	7.3	4.4	2.3	0.1	0.3	21
22	2.3	5.3	4.8	68 E	21	27	20	6.3	4.1	1.6	0.1	0.3	22
23	2.5	8.6	4.8	45 E.	20	26	19	5.0	3.9	1.3	0.1	0.2	23
24	2.4	8.7	4.9	35	20	25	18	5.0	4.1	1.0	0.2	0.0	24
25	3.4 E	8.1	4.8	32	19 *	25	16	4.9	3.8	0.6	0•1	0.0	25
26	3.4 E	7.8	4.7	32	19	24	15	4.7	3.3	0.5	0.1	0.0	26
27	3.4 E	7.4	5.0	33	19	24	15	5.5	3,1	0.3	0.1	0.1	27
28	3.4 E	7.3	6.2	33 *	19	24	13	6.1	3.3	0.1	0.1	0.2	28
29	3.4 E	7.1	6.9	33	19	26	13	5.3	3.3	0.1	0.1	0+2	29
30	2.9 E	6.8	7.1	33	• ′	28	14	2.3	3.1	0.0	0.1	0.2	30
21	2.9 E		7.8	36		31		2.5		0.0	0 • 1		21
MEAN	1.8 E	4.8	5.5	29.3	26.7	22.5	23.1	9.7	3.9	2.0	0.1	0+2	MEAI
MAX.	3.4	8.7	8.1	229 E	39.0	31.0	35.0	16.0	5.0	4.8	0.2	0.8	MAX
MIN.	0.7	2.7 E	4.5	7.6	19.0	19.0	13.0	2.3	2.2	0.0	0.0	0.0	MIN
AC. FT.	111	285	336	1407	1535	1382	1377	597	231	123	4	14	AC.FI

WATER YEAR STATION NO. STATION NAME

F25420

1964

E – ESTIMATED NR – NO RECORO * – DISCHARGE MEASUREMENT OR OBSERVA OF NO FLOW MADE THIS DAY # – E AND *

	MEAN		MAXIMU	M				MINIM	Ú M		-		TOTAL
TION	DISCHARGE	OISCHARGE	GAGE HT.	MO.	DAY	TIME	DISCHARGE	GAGE HT.	MO.]	ACRE PEET
TION	10.7	480 E	4.54	1	20	0210	0.0		7	27	2400	J	7796
								1	-	-		·	

2+

MOFFETT CREEK NEAR FORT JONES

	LOCATIO	И	MA	XIMUM DISCH	ARGE	PERIOD (OF RECORD		DATU	M OF GAGE	
		1/4 SEC. T. & R		OF RECOR	D	DISCHARGE	GAGE NEIGHT	PER	001	ZERO	REF.
LATITUDE	LONGITUDE	M.D.8.8.M.	CFS	GAGE HT.	DATE		ONLY	FROM	то	GAGE	DATUM
41 38 01	122 44 46	NE27 44N 8W		4.54	1/20/64	OCT 52-OCT 54 JUN 57-DATE	OCT 52-OCT 54 JUN 57-DATE	1957		0.00	LOCAL

Station located 90 feet above Old Fort Jones-Yreka Rigbway bridge, 5.1 miles northeast of Fort Jones. Tributary to Scott River. Stage-discharge relationship at times affected by ice. Drainage area is 69.8 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME WEAVER CREEK NEAR DOUGLAS CITY 1964 F41540

DAY	ост.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
DAI										-			
11	1.5	7.0	40	28	224	44	44	35	20	6.4	1.0	1.5	1
2	1.5	7.2	36	26	172	41	41	33	18	5.5	1.0	1.3*	1 3
3	1.4	10	33	21	140	38	39 E	35	18	5.0	1.0	1.4	3
4	1.3	30	30	18	124	37	39 E	31	19	5.3	0.9	1.0	1 1
5	3.1	18	28	15	120	36	40 E	29	27	5.4	0.7	0.9	1 3
6	5.3	45	29	41	105	35	39 E	30	26	4.5	0.7	0.7	1
7	4.6	26	27	40	94	34	39 E	28	25	4.1	0.7	0.7	1 2
	4.0	88	28	25	86	34	39 E	27	23	3.7	0.7	0.6	1 4
9	3.7	93	28	21	78	35	38 E	26	25	4.4	0.8	0.7	1
10	4.9	41	25	19	80	33	37 E	27	23	4.1	0.7	0.8	1
111	15	29	24	15	75	41	39 E	29	20	3.7	0.5	0.8	1
12	7.6	23	21 *	13	71	49	39 E	30	17	3.1	0.5	0.7	1 13
13	6+4	29	20	13	66 *	46	39 E	31	15	3.0	0.5	0.6	13
14	5.8	196 *	19	11	61	41	37 #	30	14	2.7	0.5	0.6	1.
15	11	78	18	9.6	60	41	39 "	30	12	3.3	0.4	0.7	1
16	11	49	17	11	55	40	38	30	12	3.7	0.3	0.6	1
17	7.7*	37	16	27	50	40	38	30	12	3.0	0+4	0.6	1
18	7.2	30	14	41	47	42	35	29	12	2.4	0+4*	0.8	1 1
19	6.3	90	15	52	45	41	34	28	12	2.3	0+4	0.8	1
20	6.3	68	21	3190 E	43	41	35	29	11	2.0	0+4	0.7	2
21	7.3	46	17	354	46	41	36	26	9.9	1.8	0.3	0.7	2
22	8.2	41	15	231	44	43	36	25	8.9	1.7	0.3	0.6	2
22	13	161	14	166	44	41	37	24	8.4	2.1	0.2	0.7	2
24	ii l	110	13	137	44	39	34	24	7.5	1.9	0 • 1	0.7	2
25	11	73	12	122	42	37	34	23	6.7	1.5	0.1	0.7	2
26	9.3	65	12	127	39	36	31	23 *	5.8	1.3	0.0	0.6	2
27	8.4	60	34	124	38 *	36	31	23	6.1	1.0	0.1	0.6	2
28	7.2	55	80	118	37	36	31	23	6.5	1.1	0.2	0.6	2
29	7.7	50	64	137	36	37	36	24	6.4	1.8	0.2	0.6	2
30	7.4	45	40	139 *		38	35	21	6.5	1.4	0.3	0.6	3
21	6.7		32	169		41		20		1.3	0.6		3
MEAN	6.9	56.7	26.5	176	74.7	39.2	37.0	27.5	14.5	3.0	0.5	0.8	ME
MAX.	15.0	196	80.0	3190 E	224	49.0	44.0	35.0	27.0	6.4	1.0	1.5	M
MIN.	1.3	7.0	12.0	9.6	36.0	33.0	31.0	20.0	5.8	1.0	0.0	0.6	M
AC. FT.	422	3372	1630	10830	4296	2408	2200	1692	860	187	30	45	AC
Cont	462	3312	1030	10030	1270	.+00	-200	1 1072	1				_

E - ESTIMATED NR - NO RECORD * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND *

Ţ

MEAN	MAXIMUM		MINIMU	I M	 -	 TOTAL
DISCHARGE 38.5 DISCHARGE 10700 E	GAGE HT. MO.	DISCHARGE 0 • 0	GAGE HT.		тіме 2400	ACRE REET

	LOCATION	4	MAX	INUM DISCH	ARGE	PERIOD	OF RECORD		DATUM OF GAG PERIOD ZERO ON ROM TO GAGE		
	1.010171105	1/4 SEC. T. & R.		OF RECORD	>	DISCHARGE	GAGE HEIGHT	PER	10D		REF.
LATITUDE	LONGITUDE	M.D.8 &M.	CFS	GAGE NT.	DA7E	OISCHARGE	ONLY	FROM	TO		DATUM
40 40 13	122 56 33	SE36 33N 10W	10,700 E	11.32	1/20/64	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 0.2 mile belowState Highway 299 bridge, 1.2 miles north of Douglas City, 4.2 miles south of Weaverville. Tributary to Trinity River. Drainage area is 48.4 square miles.

WATER YEAR STATION NO. STATION NAME

BROWNS CREEK NEAR DOUGLAS CITY

F41510

1964

DAILY MEAN DISCHARGE (IN CUBIC FEET PER SECOND)

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
	4 + 8	13	81	49	229	50	53	26	15	7.3	2.2	2.1	1
2	4.5	13	72	4.6	230	46	51	27	14	6.6	2.3	3.7*	2
2	4+1*	14	65	44	205	43	48	29	14	6.1	2.2	4.0	2
4	4.5	66	60	42	182	43	44	28	16	6.0	2.4	3.6	14
5	5.7	47	55	40	175	4.4	41	26	18	4.9	2.2	1.9	5
6	11	93	53	46	157	44	40	24	16	6.0	2.3	2.2	6
7	9.7	77	50	57	142	42	36	21	17	6.0	2.1	1.6	7
8	8.7	76	49	52	129	39	36	20	16	5.4	2.3	1.5	8
9	9.0	86	50	51	121	39	37	19	17	4.8	2.6	1.9	9
10	13	68	45	50	115	39	36	19	17	4.9	1.9	2.2	10
1 11	29	52	4.2	47	111	4.4	35	19	16	4.7	1.9	2.6	111
12	16	40	40 *	46	108	46	36	18	14	4.1	2.0	2.9	12
12	13	39	38	47	102 *	43	34	18	14	4.0	2.2	2.7	112
14	12	295	37	46	96	42	34 +	18	13	4.0	1.9	2.8	14
15	26	214	35	43	92	45	33	17	12	4.1	2.0	2.6	15
16	46	111	34	45	86	45	35	18	12	4.5	1.7	2.8	16
17	20	84	33	54	80	45	34	21	12	4.2	1.5	2.7	17
18	16	69	32	75	74	47	33	18	12	3.4	1.7*	2.9	18
19	14	95	33	85	71	46	30	18	11	4+2	1.7	2.6	19
20	13	102	45	937	68	45	29	18	10	3.8	1+4	2.3	20
21	13	87	39	586	64	46	29	18	9.9	3.8	1.4	2.8	21
22	13	80	36	346	60	48	27	16	8.6	2.6	1.3	2.6	22
22	14	105	35	236	57	47	27	16	8.0	2.5	1.1	2.3	22
24	14	116	34	190	56	46	28	16	7.5	2.8	1.1	2.3	24
25	15	107	33	160	53	43	27	16	7.1	2.2	1.0	2.1	25
26	14	112	34	146	50	43	27	16 *	7.0	1.9	1.1	2.2	26
27	14	128	41	140	47 •	43	26	16	6.8	1.8	2.0	2.6	27
28	13	116	48	139	46	43	26	17	7.0	1.5	2.3	3.2	28
29	13	99	53	142	4.6	44	25	17	7.6	2.6	1.8	3.5	29
30	13	89	51	146		46	25	16	7.8*	3.2	0.8	3.4	30
21	13		50	159		47		15		2 • 2	0.7		31
MEAN	13.9	89.8	45.3	139	105	44.3	34+1	19.5	12.2	4.1	1.8	2.6	MEAN
MAX.	48.0	295	81.0	937	230	50.0	53.0	29.0	18.0	7.3	2.6	4.0	MAX.
MIN.	4+1	13.0	32.0	40.0	44.0	39.0	25.0	15.0	6.8	1.5	0.7	1.5	MIN.
AC. FT.	855	5341	2783	8517	6050	2723	2027	1196	725	250	109	156	AC.FT.

E – ESTIM NR – NO RI * – DISCH OF NO # – E AND

NMATED RECORD	MEAN	<u> </u>	MAXIMU	M	$ \longrightarrow $		MINIM	JM		TOTAL	
RECORD CHARGE MEASUREMENT OR OBSERVATION NO FLOW MADE THIS DAY ND *	DISCHARGE 42+3	DISCHARGE 1660	GAGE HT 13.37	MO. DAY 1 20	1250	DISCHARGE 0 • 6	GAGE HT. 7 • 7		TIME 0000	ACRE FRET 30730	ļ

8+

(LOCATIO	н	MA	XIMUM DISCH	ARGE	PERIOD (OF RECORD		DATUM OF GAGE RIOO ZERO ON TO GAGE		
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECOR	D	DISCHARGE	GAGE HEIGHT	PES	100		REF.
LATITUDE	LONGITUDE	M.D.8.&M.	CFS	GAGE NT.	DATE	DISCHARGE	ONLY	FROM	TO		DATUM
40 38 35	122 58 46	SETU 328 104	3050 F	16.60	2/18/58	TAN ST DATE	TAN ST DATE	1057		0.00	TOCAL

Station located at private bridge, 2.1 miles west of Douglas City. Tributary to Trinity River. Stage-discharge relationship at times affected by ice. Drainage area is 71.4 square miles.

DAILY MEAN DISCHARGE

(IN CUBIC FEET PER SECOND)

WATER YEAR STATION NO. STATION NAME 1964 F42100 NORTH FORK TRINITY RIVER AT NELENA

DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DA
1	24	69	419	494	1340	353	513	331	345	134	56	35	1
2	24	69	380	465	1140	333	454	291	309	127	54	33	• 2
3	24 +	72	349	409	941	313	398	280	289	124	50	29	3
4	23	207	325	373	868	349	375	258	353	122	45	24	4
5	32	216	309	340	906	418	3 8 5	249	495	116	43	20	5
6	72	411	341	390	835	396	364	233	475 E	114	44	17	6
7	52	306	313	515	734	360	351	228	467	114	40	16	7
8	38	2660	305	474	671	332	380	231	316	117	39	17	8
9	43	2310	300	439	647	325 *	414	271	269	112	39	17	9
10	62	822	272	403	649	303	399	334	257	107	37	15	10
11	229	510	253	369	619	372	403	368	247 *	102	35 *	13	111
12	115	384	238 *	347	571	323	406	407	256	100	34	13	12
13	61	352	231	329	528	311	410	404	269	104	34	12	13
14	67	2420 *	220	303	489	311	460 *		278	103	33	13	14
15	205	1530	213	283	471	342	523	356	266	105	32	12	15
16	223	856	203	294	434	3 75	521	379	237	99	30	13	16
17	116	615	191	358	407	424	450	334	206	92	29	11	17
18	85	492	183	483	400	488	404	335	190	67	27 *	12	18
19	71	579	190	548	390 E	466	376	372	181	83	27	12	19
20	64	602	238	3400	385 E	463	361	406	182	79	27	12	20
21	98	491	229	1830	379 E	451	369	365	162	75	26	10	21
22	127	425	220	1030	375 E	423	374	355	177	73	25	9.4	22
23	261	476	213	721	371 E	388 *		364	192	66	23	7.9	23
24	152	498	205	607	365 E	351	296	373	201	64	22	8.4	24
25	246	547	205	546	361 E	315	276	371	189	61	21	8+5	25
26	171	652	211	519	361 ^E	299	278	370	181	61	21	7.5	
27	122	720	447	518	365 *	301	302	327	160	61	22	7.7	
28	97	634	908	539	350	320	396	283	141	61	22	9.5	28
29	93	543	972	606	328	369	469	284	137	69	23	10	29
30	84	471	694	716 +		434	377	309	134 +	65	23	10	30
31	77		562	796		501		350	-	59	23 E		31
MEAN	103	698	334	627	575	370	394	329	253	92.1	32.5	14.5	
MAX.	261	2560	972	3400	1340	501	523	407	495	134	56+0	35.0	
MIN.	23.0	69.0	183	283	328	299	276	228	134	59.0	21.0	7.5	
AC. FT.	6307	41530	20510	38570	33080	22730	23440	20200	15040	5665	1995	863	AC.F

E - ESTIMATEO NR - NO RECORD ° - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND °

MEAN		MAXIMU	M		M	INIMU	M	TOTAL
OISCHARGE	DISCHARGE	GAGE HT.	MO. DA	Y TIME	DISCHARGE G	GAGE HT.	MO. DAY TIME	ACRE FEET
317	4820	13.49	1 2	0 0640	5.8	6.9	9 26 154	0 229900

	LOCATIO	4	MA	KIMUM DISCH	ARGE	PERIOD (OF RECORO		DATU	M OF GAGE	
LATITUDE	LONGITUDE	1/4 SEC. T. & R		OF RECORD	>	DISCHARGE	GAGE HEIGHT	PER	IOD	ZERO	REF.
CATTODE	EORGITODE	M D.8.6M.	CFS	GAGE HT.	DATE	Discharter	ONLY	FROM	TO	GAGE	DATUM
40 46 56	123 07 39	SW21 34N 11W	13500	19.66	1/12/59	JAN 57-DATE	JAN 57-DATE	1957		0.00	LOCAL

Station located 1.0 mile above mouth, 0.6 mile north of Helena. Stage-discharge relationship at times affected by ice. Drainage area is 151 square miles.

DAILY MEAN DISCHARGE

(IN	CUBIC FEET F	PER SECOND)		,		1							
DAY	OCT.	NOV.	DEC.	JAN.	FEB.	MAR.	APR.	MAY	JUNE	JULY	AUG.	SEPT.	DAY
1	1.3	7.4	36	25	163	36	41	23	11	2.1	0.0	1.1	1
3	1.1	7.8	32	26	149	34	38	21	8.5	3.2	0.0	0.2	3
3	0.9*	8.5	29	22	122	32	36	19	7.4	5.4	0.0	0.0	3
4	0.9	22	27	22	112	33	35	16	9.5	6.8	0.6	0.0	4
5	3.0	20	25	21	111	34	36	19	11	5.9	0.5	0.0	5
6	2.6	40	23	30	105	33	34	8.0	13	5.6	0.0	0.0	6
7	2.9	26	21	37	96	31	34 *	4.4	13	5.0	0.0	0.4	7
8	2.0	62	21	33	88	30	33	5.5	12	2.1	0.0	0.1	111
9	0.0	79	22	32 +	84	31 *	33	6.1	12	2.0	0.0	0.5	9
10	0.2	41	20	30	81	30	33	4.8	12	1.9	0.7	0.8	10
111	8.5	28	19	28	74	33	34	4.3	9.3*	2.8	0.1*	0.6	1 11
12	8.1	24	20	28	68	34	32	4.8	7.1	3.1	0.0	0.7	13
13	6.6	24	17	29	63	32	31	7.0	3.7	3.4	0.0	0.0	13
14	7.0	100 *	18	28	59	31	32	6.2*	3.5	2.3	0.2	0.5	14
15	18	87	17	26	58	32	32	6.6	2.8	0.0	0.0	0.9	15
16	17	55	17	29	54	33	31	5.7	2.5	0.0	0.0	0.9	16
17	9.3*	43	17	38	51	35	32	5.1	3.5	0.0	0.0	0.6	17
10	7.8	35	17	46	49	38	31	5.0	1.4	0.0	0.0	0.7	18
19	6.3	71	18	61	45	37	31	5.7	0.8	0.0	0.4	0.5	19
20	6.8	56	24	411 E	44	36	29	4.7	0.7	0.0	0.0	0.3	20
21	8.1	43	21	219 E	42	36	27	3.6	1.3	0.0	0.0	0.7	21
22	8.5	38	20	134	42	36	25	4.4	0.3	0.0	0.0	0.8	22
23	12	78	17	98	41	34	28	4+1	0.6	0.0	0.0	0.4	33
24	10	66	16	83	40	36	27	3.7	0.3	0.0	0.0	0.8	24
35	10	61	16	79	39	33	26	4.0	0.6	0.0	0.0	0.0	25
26	8.5	62	15	79	38	33	26	10	0.3	0.0	0.0	0.5	36
27	7.9	65	21	76	35	33	26	17	2.1	0.0	0.0	1.4	27
38	7.6	56	28	75	35	34	22	16	6.3	0.2	0.0	1.2	28
29	8.0	47	33	83	34	35	22	15	5.4	0.1	0.0	1.1	29
30	7.5	41	29	91 *		37	22	16	5.5*	0.0	0.0	1.2	30
31	7.8		27	112		38		16		0.1	0.7		31
MEAN	6.7	46.5	22.0	68.7	69.7	33.9	30.6	9.4	5.6	1.7	0.1	0.6	MEAN
MAX.	18.0	100	36.0	411 E	163	38.0	41.0	23.0	13.0	6.8	0.7	1.4	MAX.
MIN.	0.0	7.4	15.0	21.0	34.0	30.0	22.0	3.6	0.3	0.0	0.0	0.0	MIN.
AC. FT.	409	2764	1355	4227	4011	2083	1823	579	332	103	6	34	AC.FT.

WATER YEAR STATION NO. STATION NAME

1964 F44500 BIG CREEK NEAR HAYFORK

E - ESTIMATED NR - NO RECORD * - DISCHARGE MEASUREMENT OR OBSERVATION OF NO FLOW MADE THIS DAY # - E AND *

MEAN		MAXIMU	M		 	MINIM	U.M.			<u>`</u>	TOTAL
DISCHARGE 24.4	DISCHARGE 773 E	GAGE HT. 9+64	MO. DA 1 20	0900	DISCHARGE 0.0	GAGE HT.	MO. 10	DAY 3	TIME 1810]	ACRE PRET 17720

۶.

	LOCATION			MAXIMUM DISCHARGE			OF RECORD		DATUM OF GAGE		
		1/4 SEC. T. & R.	OF RECORD			DISCHARGE	GAGE HEIGHT	PERIOD		ZERO	REF.
LATITUDE	LONGITUDE	м. р. в. &м.	CFS	GAGE HT.	OATE		ONLY	FROM	то	GAGE	DATUM
40 33 11	123 08 35	SE7 31N 11W	1540 E	9.25	2/18/58	FEB 57-DATE	FEB 57-DATE	1957		0.00	LOCAL

Station located 30 feet above Hayfork-Douglas City Highway bridge, 2 miles East of Hayfork. Tributary to South Fork Trinity River via Hayfork Creek. Flow influenced by upstream diversion dam of community.of Hayfork. Drainage area is 27.3 square miles.

APPENDIX C

GROUND WATER MEASUREMENTS

GROUND WATER MEASUREMENTS

All studies of ground water problems, and plans for the solution of these problems, should be founded upon accurate records of ground water elevations obtained over a period of many years. This is true whether the problem is the determination of the safe yield of a ground water basin, an operation of a basin for cyclic storage in conjunction with surface water supplies, or the control of sea water intrusion.

The Department began the collection of ground water data in 1930, in conjunction with special investigations of water resources of specific areas, and has gradually developed a continuing program of basic data collection. Through cooperative activities with the federal and local agencies, coordinated and augmented by the Department, the program of ground water level measurements has gradually been expanded for adequate coverage in most basins.

Within the North Coastal Area the Department cooperated with the U. S. Geological Survey during the 1963-64 fiscal year in the systematic observation of ground water levels in nine of the more important ground water basins. The field measurements were made by the U. S. Geological Survey; whereas, the review, processing, and editing of the data was accomplished by the Department.

Wells are selected for measurement on the basis of geographical density, length of record, frequency of measurements, conformity to water level fluctuations in the basin and avialability of a well log, mineral analyses and production records.

The depth to water in most of the wells is normally a direct measurement made with a tape. However, in some of the deeper wells measurements are made with an air line and gage or an electric sounder.

-39-

A summary of the average seasonal change in water levels in the nine ground water basins reported in this appendix are given in Table C-1, "Average Ground Water Level Changes in North Coastal Area Basins". The ground water level measurements collected from the North Coastal Area basins during the 1963-64 fiscal year are included in Table C-2, "Ground Water Level Measurements".

Numbering Systems

Region and Basin Designations. All data presented in this appendix is located within Region 1, a geographic area defined in Section 13040 of the Water Code. The nine ground water basins measured in the program during 1963-64 are shown on Figure C-1.

A decimal system of the form 0-00.0 is used for basin numbering. The number to the left of the dash refers to the geographic region and the first two digits of the number on the right of the dash refer to the hydrographic unit, generally designated as a basin, valley, or area. These are followed by a decimal which shows the subbasin, area, or subarea within the basin, valley, or area. Two zeros following the decimal denotes that there is no subbasin, area, or subarea. An example is given below:

> I-01.00 Region (North Coastal Region) Hydrographic Unit (Smith River Plain) Subarea (No subareas exist in the North Coastal Region)

Well Numbering System. The state well numbering system used in this report is based on the township, range, and section subdivision of the United Stated Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data is published or filed by the Department. In this report, the number of a well assigned in accordance with this system is referred to as the State Well Number.

Within the system each section is divided into 40-acre tracts lettered as follows:

D	С	В	A
E	F	G	н
М	L	K	J
N	Р	Q	R

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/1W-2J1H would be in Township 16 North, Range 1 West, Section 2, Humboldt Base and Meridan, and would be further designated as the first well assigned a State Well Number in Tract J. In this report well numbers are referenced to the Humboldt Base and Meridian (H), and the Mount Diablo Base and Meridian (M).

Agency Supplying Data. The code number assigned to the U.S. Geological Survey, the sole measuring agency for the wells listed in this appendix, is 5000.

Well Use. The use of water is indicated as follows:

Code	Well Use
(Blank)	Unknown
1	Domestic
2	Irrigation
2 3 4	Municipal Industrial
5	Injection or Recharge
6	Drainage
7	Domestic and Irrigation
8	Test
9	Stock
0	Unused

Well Depth. Well depths shown were reported by the owner, obtained from a driller's log or measured at the time of the well canvass.

<u>Reason for Questionable Measurement</u>. If the water level measurement is of questionable reliability, the reason is indicated by the following code preceding the measurement:

6 Other	Code	Reason
	3 4 5	Nearby pump operating Casing leaking or wet Pumped recently Air or pressure gage measureme Other Recharge operation at or near Oil in casing

Reason for No Measurement. If no measurement was made at a well scheduled to be measured, the reason for not making the measurement is indicated by the following code:

Code	Reason
1 2 3 4 5 6 7 8 90	Pump operating Pump house locked Tape hung up Cannot get tape into casing Unable to locate well Well has been destroyed Special Casing leaking or wet Temporarily inaccessible Measurement discontinued

TABLE C-1 AVERAGE GROUND WATER LEVEL CHANGES IN NORTH COASTAL AREA BASINS SPRING 1963 - SPRING 1964

_	Ground Water Basin		:	Number of Wells Considered in	:	Average Ground Water Level Change 1963 to 1964, in feet
-	Name :	Number	:	Analysis	:	
	Smith River Plain	1-01.00		4		-2.2
	Butte Valley	1-03.00		5		-1.3
	Shasta Valley	1-04.00		, 6		-0.1
	Scott River Valley	1-05.00		4		-1.4
	Mad River Valley	1-08.00		2		0.0
	Eel River Valley	1-10.00		3		-1.4
	Round Valley	1-11.00		4		-1.2
	Laytonville Valley	1-12.00		3		-1.5
	Little Lake Valley	1-13.00		3		-0.6

	G	ROUND			RLEVEL	MEASU	REMENT	<u>S</u>	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD	RD	GROUND SURFACE ELEVATION	DATE	GROUND TO WATER SURFACE	WATER SURFACE ELEVATION	AGENCY SUPPLYING DATA
			BEGIN	END TH COA	IN FEET	1-00.00	IN FEET	IN FEET	
SMITH RIVER PLAIN	1-01	.00							
16N/01W-02J01 H	l	36	53		127.0	$\begin{array}{c} 7-11-63\\ 8-20-63\\ 9-19-63\\ 10-24-63\\ 11-21-63\\ 12-17-63\\ 1-16-64\\ 2-26-64\\ 3-18-64\\ 4-15-64\\ 5-13-64\\ 6-17-64\\ \end{array}$	18.5 20.0 20.2 18.6 15.2 16.0 15.0 15.6 15.2 16.6 16.9 17.6	108.5 107.0 106.8 108.4 111.8 111.0 112.0 111.4 111.8 110.4 110.1 109.4	5000 5000 5000 5000 5000 5000 5000 500
16N/01W-17K01 H	l	40	53		48.0	$\begin{array}{c} \textbf{7-11-63} \\ \textbf{8-20-63} \\ \textbf{9-19-63} \\ \textbf{10-24-63} \\ \textbf{11-21-63} \\ \textbf{12-17-63} \\ \textbf{12-17-63} \\ \textbf{1-16-64} \\ \textbf{2-26-64} \\ \textbf{3-18-64} \\ \textbf{4-15-64} \\ \textbf{5-13-64} \\ \textbf{6-17-64} \end{array}$	$(1) \\ 18.8 \\ 20.0 \\ 21.5 \\ 19.9 \\ 17.9 \\ 16.6 \\ 13.4 \\ 13.5 \\ 15.3 \\ 17.6 \\ 18.8 \\ 18.8 \\ 18.8 \\ 10.1 \\ 1$	29.2 28.0 26.5 28.1 31.4 34.6 34.5 32.7 32.4 29.2	5000 5000 5000 5000 5000 5000 5000 500
17N/01W-02P01 H	1	27	52		31.0	$\begin{array}{c} 7\text{-}11\text{-}63\\ 8\text{-}20\text{-}63\\ 9\text{-}19\text{-}63\\ 10\text{-}24\text{-}63\\ 11\text{-}21\text{-}63\\ 12\text{-}17\text{-}63\\ 1\text{-}16\text{-}64\\ 2\text{-}26\text{-}64\\ 3\text{-}18\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}17\text{-}64\\ \end{array}$	21.0 22.2 21.9 20.7 15.7 18.6 17.1 17.8 16.8 18.8 20.2 21.6	10.0 8.8 9.1 10.3 15.3 12.4 13.9 13.2 14.2 14.2 12.2 10.8 9.4	5000 5000 5000 5000 5000 5000 5000 500
18N/01W-26F01 H	7	28	52		38.0	$\begin{array}{c} 7\text{-11-}63\\ 8\text{-20-}63\\ 9\text{-19-}63\\ 10\text{-}24\text{-}63\\ 11\text{-}21\text{-}63\\ 12\text{-}17\text{-}63\\ 12\text{-}17\text{-}63\\ 12\text{-}15\text{-}64\\ 3\text{-}18\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}17\text{-}64\\ \end{array}$	20.3 (7) 25.7 19.6 14.3 18.2 16.7 18.7 17.2 19.6 21.1 21.4	17.7 12.3 18.4 17.7 19.8 21.3 19.3 20.8 18.4 16.9 16.6	5000 5000 5000 5000 5000 5000 5000 500

TABLE C-2

	G	ROUN		R LEVEL	MEASU	REMENT	S	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
BUTTE VALLEY 1-0	03.00							
46n/ole-o6nol M	2	200	52	4242 . 4	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	22.9 29.5 24.3 22.4 21.4 20.9 20.5 20.1 19.8 19.8 27.1 21.3	4219.5 4212.9 4218.1 4220.0 4221.5 4221.9 4222.3 4222.6 4222.6 4215.3 4221.1	5000 5000 5000 5000 5000 5000 5000 500
46n/02w-25ro2 m	2	116	52	4256.2	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	(1) (1) 31.5 27.2 26.0 25.6 25.6 25.9 26.1 26.2 31.3 29.3	4224.7 4229.0 4230.2 4230.2 4230.6 4230.3 4230.1 4230.0 4224.9 4226.9	5000 5000 5000 5000 5000 5000 5000 500
47N/OlW-14BOl M	8	50	51	4233.7	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	11.9 12.1 12.2 12.3 12.4 12.5 13.4 12.3 12.2 12.3 12.2 12.3 12.2	4221.8 4221.6 4221.5 4221.4 4221.3 4221.2 4220.3 4221.4 4221.5 4221.4 4221.5 4221.4 4221.5	5000 5000 5000 5000 5000 5000 5000 500
Ч7N/О1₩-27ВО1 М	8	40	51	4233.4	7-12-63 8-21-63 9-20-63 10-25-63 11-22-63 12-16-63 1-17-64 2-27-64 3-19-64 4-16-64 5-14-64 6-18-64	10.1 10.5 10.8 11.0 11.0 11.1 11.0 10.0 10.5 10.6 10.2	4223.3 4222.9 4222.6 4222.4 4222.3 4222.4 4222.3 4222.4 4223.4 4222.9 4222.8 4222.8 4222.8 4222.8 4222.8	5000 5000 5000 5000 5000 5000 5000 500

GROUND WATER LEVEL MEASUREMENTS

	G	ROUNI		K LLYLL	MLAJO	KEMENT	0	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYIN DATA
BUTTE VALLEY 1-	03.00							
48n/olw-26nol M	0	375	53	4244.2	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	18.720.120.519.519.019.118.918.316.316.316.016.417.3	4225.5 4224.1 4223.7 4225.2 4225.2 4225.3 4225.3 4225.9 4227.9 4228.2 4227.8 4227.8	5000 5000 5000 5000 5000 5000 5000 500
SHASTA VALLEY 1	-04.00							
42N/05W-20JOL M	1	140	53	2882.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	5.8 5.4 5.8 5.8 5.7 7.1 6.3 5.1 4.6	2876.2 2876.6 2877.8 2876.2 2876.2 2876.3 2874.9 2875.8 2875.8 2875.8 2875.8 2875.9 2875.4 2876.9 2877.4	5000 5000 5000 5000 5000 5000 5000 500
42N/06W-10J01 M	l	110	53	2835.0	7-12-63 8-21-63 9-20-63 10-25-63 11-22-63 12-16-63 1-17-64 2-27-64 3-19-64 3-19-64 5-14-64 5-14-64	5.8 8.4 10.3 9.4 8.7 9.0 6.0 3.1 5 4.5	2829.2 2826.6 2824.7 2825.6 2826.3 2825.8 2827.0 2829.0 2831.9 2830.5 2830.5	5000 5000 5000 5000 5000 5000 5000 500
43N/06W-22A01 M	l	100	52	2665.0	7-12-63 8-21-63 9-20-63 10-25-63 11-22-63 12-16-63 1-17-64 3-19-64 4-16-64 5-14-64 6-18-64	(2) 17.1 (2) 27.9 (1) 6.3 4.8 4.1 3.1 3.3 2.8 (1) (1) (1)	2647.9 2637.1 2658.7 2660.2 2660.9 2661.9 2661.7 2662.2	5000 5000 5000 5000 5000 5000 5000 500

	G	ROUNI	D WATE	R LEVEL	MEASU	REMENT	S	
TE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYING DATA
ASTA VALLEY 1-	-0 ¹ +.00							
N/05W-34H01 M	2	96	52	2637.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 12-12-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	26.5 (1) 24.2 25.2 26.9 27.9 26.9 28.0 29.0 (1) 28.4 26.4	2610.5 2612.8 2611.8 2610.1 2609.1 2610.1 2609.0 2608.0 2608.6 2610.6	5000 5000 5000 5000 5000 5000 5000 500
N/05W-29B01 M	l	23	53	2635.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-21-63\\ 12-16-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	(1) 17.8 17.9 16.8 17.3 18.3 20.4 21.1 (1) 20.5 18.8	2617.2 2617.1 2618.2 2617.7 2616.7 2615.7 2614.6 2613.9 2614.5 2616.2	5000 5000 5000 5000 5000 5000 5000 500
N/06W-19E01 M	l	425	53	2538.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-21-63\\ 12-16-63\\ 12-16-63\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64 \end{array}$	16.9 18.1 22.1 17.2 19.8 19.4 19.5 19.0 18.5 18.9 18.6 18.8	2521.1 2519.9 2515.9 2520.8 2518.6 2518.6 2518.5 2519.0 2519.5 2519.1 2519.4 2519.2	5000 5000 5000 5000 5000 5000 5000 500
OTT RIVER VALLE	EY 1-0	5.00						
:N∕O9₩-08CO3 M	l	66	60	2836.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 11-22-63\\ 11-21-63\\ 12-17-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	33.8 40.5 45.6 50.4 (1) 51.7 50.4 38.7 34.8 35.6 39.3 34.2	2802.2 2795.5 2790.4 2785.6 2784.3 2785.6 2797.3 2801.2 2800.4 2796.7 2801.8	5000 5000 5000 5000 5000 5000 5000 500

TABLE C-2 (Continued) GROUND WATER LEVEL MEASUREMENTS

	G	KOUN	DWAIL	K LL VLL	MLAJU	KEMENT	5	
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYIN DATA
SCOTT RIVER VALLE	EY 1-0	5.00						
42n/09W-27N0l M	0	19	53	2930.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-17-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	3.1 6.9 8.0 6.3 4.1 4.6 2.2 3.2 3.9 2.4 1.1	2926.9 2923.1 2922.0 2923.7 2925.9 2925.4 2927.8 2926.8 2926.1 2927.6 2928.9 2928.4	5000 5000 5000 5000 5000 5000 5000 500
43N/09W-24F01 M	2	205	53	2735.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-17-63\\ 1-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	4 4 (1) (1) 10.8 10.2 10.5 11.0 10.6 10.6 10.6 8.5 4.2 4.8	2730.6 2724.2 2724.8 2724.5 2724.5 2724.0 2724.4 2724.4 2724.4 2726.5 2730.8 2730.2	5000 5000 5000 5000 5000 5000 5000 500
44N/09W-28POl M	0	65	53	2711.0	$\begin{array}{c} 7-12-63\\ 8-21-63\\ 9-20-63\\ 10-25-63\\ 11-22-63\\ 12-17-63\\ 2-17-64\\ 2-27-64\\ 3-19-64\\ 4-16-64\\ 5-14-64\\ 6-18-64\\ \end{array}$	(7) 11.9 9.9 (7) 25.0 23.2 9.0 9.5 3.8 3.8 9.8	2699.1 2701.1 2686.0 2689.7 2687.8 2702.0 2701.5 2707.2 2707.2 2707.2 2701.2	5000 5000 5000 5000 5000 5000 5000 500
MAD RIVER VALLEY	1-08.	00						
06N/Ole-06Hol H	3	27	51	151.0	7-11-63 8-20-63 9-19-63 10-24-63 11-21-63 12-18-63 1-16-64 2-26-64 3-18-64 3-18-64 5-13-64 5-13-64 6-17-64	8.9 11.8 14.0 11.1 2.2 3.7 1.0 3.3 2.1 4.2 6.2 8.8	142.1 139.2 137.0 139.9 148.8 147.3 150.0 147.7 148.9 146.8 144.8 142.2	5000 5000 5000 5000 5000 5000 5000 500

TE WELL NUMBER	WELL USE	WELL DEPTH	PERIOD OF RECORD	GROUND SURFACE ELEVATION	DATE	GROUND TO WATER SURFACE	WATER SURFACE	AGENCY SUPPLYING
	056		BEGIN END	IN FEET		IN FEET	ELEVATION IN FEET	DATA
D RIVER VALLEY	1-08.	00						
N∕01E-29F01 H	4	46	52	25.0	$\begin{array}{c} 7-11-63\\ 8-20-63\\ 9-19-63\\ 10-24-63\\ 11-20-63\\ 12-18-63\\ 1-16-64\\ 2-26-64\\ 3-18-64\\ 4-15-64\\ 5-13-64\\ 6-17-64\\ \end{array}$	$ \begin{array}{c} 11.7\\ 13.7\\ 14.0\\ 11.6\\ 8.9\\ 8.4\\ 7.6\\ 7.5\\ 7.0\\ 7.5\\ 8.0\\ 9.1 \end{array} $	13.3 11.3 13.4 16.6 17.4 17.5 18.0 17.5 17.0 15.9	5000 5000 5000 5000 5000 5000 5000 500
L RIVER VALLEY	1-10.	00						
3N/01W-18D01 H	l	24	51	24.0	$\begin{array}{c} 7-10-63\\ 8-20-63\\ 9-19-63\\ 10-24-63\\ 11-20-63\\ 12-18-63\\ 1-16-64\\ 2-26-64\\ 3-18-64\\ 4-15-64\\ 5-13-64\\ 6-17-64\\ \end{array}$	1.7 2.1 2.2 2.3 2.5 2.7 2.4 1.6 1.6 1.5 1.6 1.9	22.3 21.9 21.8 21.7 21.5 21.3 21.6 22.4 22.4 22.5 22.4 22.1	5000 5000 5000 5000 5000 5000 5000 500
м∕отм-34јот н	0	496	51	60.0	$\begin{array}{c} 7\text{-}10\text{-}63\\ 8\text{-}21\text{-}63\\ 9\text{-}19\text{-}63\\ 10\text{-}23\text{-}63\\ 11\text{-}20\text{-}63\\ 12\text{-}18\text{-}63\\ 12\text{-}18\text{-}64\\ 2\text{-}26\text{-}64\\ 2\text{-}26\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}17\text{-}64\\ \end{array}$	(7) 34.5 35.0 34.9 32.9 33.2 32.8 32.2 32.1 32.6 33.2 33.9	25.5 25.0 25.1 27.1 26.8 27.2 27.8 27.9 27.4 26.8 26.1	5000 5000 5000 5000 5000 5000 5000 500
8N/02W-26R01 H	2	30	51	20.0	$\begin{array}{c} 7\text{-}10\text{-}63\\ 8\text{-}20\text{-}63\\ 9\text{-}19\text{-}63\\ 10\text{-}24\text{-}63\\ 11\text{-}20\text{-}63\\ 12\text{-}18\text{-}63\\ 12\text{-}18\text{-}64\\ 2\text{-}26\text{-}64\\ 3\text{-}18\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}17\text{-}64\\ \end{array}$	8.1 9.2 9.2 8.5 6.7 6.7 8.1 8.0 5.0 6.1 6.9 8.0	11.9 10.8 10.8 11.5 13.3 11.9 12.0 15.0 13.9 13.1 12.0	5000 5000 5000 5000 5000 5000 5000 500

	G	ROUNI) W	ATE	R LEVEL	MEASUREMENTS				
STATE WELL NUMBER	WELL USE	WELL DEPTH	PERIO	RD	GROUND SURFACE ELEVATION	DATE	GROUND TO WATER SURFACE	WATER SURFACE ELEVATION	AGENO SUPPLY DATA	
			BEGIN	END	IN FEET		IN FEET	IN FEET		
ROUND VALLEY 1-	11.00									
22N/12W-04B01 M	2	200	51		1351.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-05-63\\ 10-09-63\\ 11-14-63\\ 12-17-63\\ 1-24-64\\ 2-26-64\\ 3-17-64\\ 4-10-64\\ 5-07-64\\ 6-09-64\\ \end{array}$	8.2 10.9 11.9 14.8 10.0 6.6 4.4 6.2 (7) 6.7 (7) 7.1 7.6	1342.8 1340.1 1339.1 1336.2 1341.0 1344.4 1346.6 1344.8 1344.3 1343.9 1343.9	5000 5000 5001 5001 5001 5001 5001 5001	
22N/12W-06L03 M	0	660	60		1369.7	7-31-63 9-05-63 10-09-63 11-14-63 12-18-63 1-24-64 2-26-64 4-09-64 5-07-64 6-09-64	5.2 7.7 2.5 -3.6 -6.8 FLOW FLOW FLOW FLOW -6.8	1364.5 1362.0 1367.2 1373.3 1376.5	500: 500: 500: 500: 500: 500: 500: 500:	
22N/13W-12R01 M	9	321	61		1400.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-05-63\\ 10-09-63\\ 11-14-63\\ 12-18-63\\ 1-24-64\\ 2-26-64\\ 3-17-64\\ 4-10-64\\ 5-07-64\\ 6-09-64\\ \end{array}$	11.2 17.1 20.1 24.3 10.9 16.6 9.2 6.8 (7) 7.8 9.3 12.4	1388.8 1382.9 1379.9 1375.7 1389.1 1383.4 1390.8 1393.2 1392.2 1392.2 1390.7 1387.6	500: 500: 500: 500: 500: 500: 500: 500:	
23N/12W-31NO1 M	2	200	51		1388.5	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-05-63\\ 10-09-63\\ 11-13-63\\ 12-18-63\\ 12-18-63\\ 2-26-64\\ 3-17-64\\ 4-10-64\\ 5-07-64\\ 6-09-64 \end{array}$	FLOW 0.7 1.5 (1) 2.0 FLOW FLOW FLOW FLOW FLOW FLOW	1387.8 1387.0 1386.5	5000 5000 5000 5000 5000 5000 5000 500	
						5-07-64	FLOW		5	

	WFLL	WELL DEPTH	PERIOD OF RECORD			GROUND TO	WATER	AGENCY
TE WELL NUMBER	USE	IN FEET	BEGIN END	SURFACE ELEVATION IN FEET	DATE	WATER SURFACE IN FEET	SURFACE ELEVATION IN FEET	SUPPLYING DATA
UND VALLEY 1-3	L1.00							
N/13W-36C03 M	9	289	61	1409.5	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-05-63\\ 10-09-63\\ 12-18-63\\ 1-23-64\\ 2-25-64\\ 3-17-64\\ 4-09-64\\ 5-07-64\\ 6-09-64\\ \end{array}$	13.3 19.1 21.9 25.6 18.0 12.7 7.0 8.8 (7) 9.5 10.4 12.8	1396.2 1390.4 1387.6 1383.9 1391.5 1396.8 1402.5 1400.7 1400.0 1399.1 1396.7	5001 5001 5001 5001 5001 5001 5001 5001
N/13W-36Q01 M	9	300	61	1403.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-05-63\\ 10-09-63\\ 11-13-63\\ 12-18-63\\ 1-24-64\\ 2-25-64\\ 3-17-64\\ 4-09-64\\ 5-07-64\\ 6-09-64\\ \end{array}$	6.4 11.5 13.8 16.6 13.6 6.5 0.2 1.3 (7) 2.4 3.8 6.0	1396.6 1392.5 1389.2 1386.4 1386.4 1396.5 1402.8 1401.7 1400.6 1399.2 1397.0	5001 5001 5001 5001 5001 5001 5001 5001
YTONVILLE VALLE	Y 1-12	2.00						
N/14W-30M01 M	7	23	52	1688.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-18-63\\ 10-23-63\\ 12-20-63\\ 12-18-63\\ 1-15-64\\ 2-25-64\\ 3-17-64\\ 4-15-64\\ 5-13-64\\ 6-16-64\\ \end{array}$	13.2 15.8 15.9 16.1 7.9 5.8 5.2 6.9 5.3 5.9 8.2 14.5	1674.8 1672.2 1672.1 1680.1 1682.2 1682.8 1681.1 1682.7 1682.1 1679.8 1673.5	5000 5000 5000 5000 5000 5000 5000 500
N/15₩-12M02 M	l	50	62	1545.0	$\begin{array}{c} 7\text{-}10\text{-}63\\ 8\text{-}19\text{-}63\\ 9\text{-}18\text{-}63\\ 10\text{-}23\text{-}63\\ 11\text{-}20\text{-}63\\ 12\text{-}18\text{-}63\\ 1\text{-}15\text{-}64\\ 2\text{-}25\text{-}64\\ 3\text{-}17\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}16\text{-}64\\ \end{array}$	12.9 15.1 16.3 17.2 12.3 12.1 8.3 7.9 5.7 9.5.7 9.2.2 (1)	1532.1 1529.9 1528.7 1527.8 1532.9 1543.6 1537.1 1539.3 1535.7 1532.8	5000 5000 5000 5000 5000 5000 5000 500

GROUND WATER LEVEL MEASUREMENTS											
STATE WELL NUMBER	WELL USE	WELL DEPTH IN FEET	PERIOD OF RECORD BEGIN END	GROUND SURFACE ELEVATION IN FEET	DATE	GROUND TO WATER SURFACE IN FEET	WATER SURFACE ELEVATION IN FEET	AGENCY SUPPLYIN DATA			
LAYTONVILLE VALLE	Y 1-1	2.00									
21N/15W-24A01 M	0	22	52	1653.0	$\begin{array}{c} 7\text{-}10\text{-}63\\ 8\text{-}19\text{-}63\\ 9\text{-}18\text{-}63\\ 10\text{-}23\text{-}63\\ 11\text{-}20\text{-}63\\ 12\text{-}18\text{-}63\\ 1\text{-}15\text{-}64\\ 2\text{-}25\text{-}64\\ 3\text{-}17\text{-}64\\ 4\text{-}15\text{-}64\\ 5\text{-}13\text{-}64\\ 6\text{-}16\text{-}64 \end{array}$	4 7 7 3 7 9 8 5 2 9 1 4 2 6 1 6 2 8 3 0 4 0	1648.3 1645.7 1645.1 1644.5 1652.2 1650.1 1651.6 1650.4 1651.4 1650.2 1650.0 1649.0	5000 5000 5000 5000 5000 5000 5000 500			
LITTLE LAKE VALLE	Y 1-1	3.00									
18N/13W-08L01 M	l	19	53	1340.0	$\begin{array}{c} 7\ -10\ -63\\ 8\ -19\ -63\\ 9\ -18\ -63\\ 10\ -23\ -63\\ 12\ -18\ -63\\ 12\ -18\ -63\\ 12\ -18\ -64\\ 2\ -25\ -64\\ 3\ -17\ -64\\ 4\ -14\ -64\\ 5\ -12\ -64\\ 6\ -16\ -64\\ \end{array}$	4.3 (1) 5.8 (1) (1) 0.3 0.6 0.2 1.2 0.4 2.1 2.7 4.0	1335.7 1334.2 1339.4 1339.4 1339.8 1339.8 1339.6 1337.9 1337.3 1336.0	5000 5000 5000 5000 5000 5000 5000 500			
18N/13W-17JOl M	1	40	58	1350.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-18-63\\ 10-23-63\\ 11-20-63\\ 12-18-63\\ 1-15-64\\ 2-25-64\\ 3-17-64\\ 4-14-64\\ 5-12-64\\ 6-16-64\\ \end{array}$	$ \begin{array}{c} 10.0\\ 13.0\\ 14.0\\ 14.7\\ 12.8\\ 11.0\\ 9.0\\ 6.4\\ 5.9\\ 6.4\\ 7.2\\ 8.9\end{array} $	1340.0 1337.0 1336.0 1335.3 1337.2 1339.0 1341.0 1343.6 1344.1 1343.6 1342.8 1341.1	5000 5000 5000 5000 5000 5000 5000 500			
18N/13W-18E01 M	0	493	58	1350.0	$\begin{array}{c} 7-10-63\\ 8-19-63\\ 9-18-63\\ 10-23-63\\ 11-20-63\\ 12-18-63\\ 12-18-64\\ 2-25-64\\ 3-17-64\\ 4-14-64\\ 5-12-64\\ 6-16-64 \end{array}$	21.8 25.4 27.4 25.7 26.0 21.1 21.5 21.2 20.9 22.2 22.8 24.3	1328.2 1324.6 1322.6 1324.3 1324.0 1328.9 1328.5 1328.8 1329.1 1327.8 1327.2 1325.7	5000 5000 5000 5000 5000 5000 5000 500			

APPENDIX D

SURFACE WATER QUALITY

Δ.

-

SURFACE WATER QUALITY

The Surface Water Quality Data Program provides basic information on the quality characteristics of the State's surface waters. Data presented on this appendix are measured values of the chemical, physical, and radiolocical characteristics of surface waters in the North Coastal Area, as shown on the "Area Orientation Map". The surface water quality program is performed on cooperation with other state, local, and federal agencies.

All data presented in this volume are within the North Coastal Water Pollution Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Figure B-1 In Appendix B shows the location of surface water sampling stations for the 1963-64 water year. Surface water quality samples are normally collected at or near existing stream gaging stations.

The Surface Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature and dissolved oxygen are those measured in the field at the time of sampling. Comments on Local conditions are noted in the field books but are not included in the cabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and comperature is in degrees Fahrenheit. Laboratory analyses of surface water

-57-

samples were performed by the U. S. Geological Survey (USGS) in accordance with "Methods for Collection and Analysis of Water Samples", Water-Supply Paper 1454. Analysis of surface water samples for trace elements was performed by spectrograph by the U. S. Geological Survey and is reported in parts per billion.

Analyses for radioactivity were made by the California Department of Public Health in Berkeley, and the results are expressed in terms of activity measured in micro-micro curies per liter (mmc/l), which is equivalent to pico-curies per liter (pc/l). The most probable error is reported with the measured value.

Bacteriologic determinations were also made by the California Department of Public Health in Berkeley, and are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation can be made.

TABLE D-I SAMPLING STATION DATA AND INDEX

NORTH COASTAL AREA

Station	Station Number	Locatian®	Periad ^D af Recard	Frequency ^C of Sampling	Sampied ^d by	Analyses an Page
Antelope Creek near Tennant	le	43N/1W-25	MAR 59	м	DWR	
Bear River near Capetown	76	01N/03W-13 *	MAY 64	м	DWR	
Butte Creek near Macdoel	ld	45N/1W-30	MAR 59	м	DWR	
Eel River near Dos Rioa	5a	eln/13W-31	APR 58	м	DWR	
Eel River near McCann	5	025/03E-04 *	APR 51	м	DWR	
Eel River, Middle Fork at Dos Rios	5c	21N/13W-06	APR 58	м	DWR	
Eel River at Scotia	6	02N/01E-31 *	APR 51	м	DWR	
Eel River, South Fork near Miranda	7	035/04E-30 *	APR 51	м	DWR	
Klamath River above Hamburg Reservoir Site	lc	46N/10W-14	DEC 58	м	DWR	
Klamath River helow Iron Gate Dam	lf	47N/05W-17	DEC 61	м	DWR	
Klamath River near Klamath	3"	13N/01E-24 *	APR 51	м	DWR	
Klamath River at Orleans	2c	11N/06E-31 *	JAN 64	м	DWR	
Klamath River near Seiad Valley	26	46N/12W-03	DEC 58	м	DWR	
Mad River near Arcata	ба.	06N/01E-15 *	NOV 58	м	DWR	
Mattole River near Petrolia	7a	025/02W-11 *	JAN 59	М	DWR	
Outlet Creek near Longvale	50	20N/14W-01	MAY 58	М	DWR	
Redwood Creek at Orick	3h	10N/OLE-04 *	NOV 58	М	DWR	
Salmon River at Someshar	28	11N/06E-02 *	NOV 58	S	DWR	
Scott River near Fort Jones	lb	44N/10W-29	DEC 58	М	DWR	
Shaata River near Yreka	la	46N/07W-24	DEC 58	м	DWR	
Smith River near Creacent City	3a	16N/01E-10 *	APR 51	м	DWR	
Frinity River near Burnt Ranch	4b	05N/07E-19 *	APR 58	м	DWR	
Frinity River near Hoopa	4	08N/05E-31 *	APR 51	м	DWR	
Frinity River at Lewiston	48	33N/08W-17	APR 51	м	DWR	
Van Duzen River near Bridgeville	5a	01N/03E-17 *	APR 58	м	DWR	

Except as indicated below location is referenced to M1. Orabla Base and Meridian "Humboldt Base and Meridian Beginning at recard M. Monthy, B.-Bimonthy, Q.-Quarterly, S.-Semiannually Oblitantua Department of Water Resources (JNR)

																		_			
		Anolyzed by ?																			
		Hordness bid - Coliform h de CoCO ₃ bid - MPN/mi																			
		Tur - bid - 11y																			
		50°3	N N	Ч	m	~															
		Hordr ee Co	Total N.C. ppm ppm	0	0	0															
		- po		53	ដ	ភ	-	 _									-				
		eolived	mqq ni	53	ส	ສ					 _										
		Silico	(² 0)					 			 	 									
		1 5	(8)	0.0	1.0	0.0		 			 	 		_							
	million	Chio- Ni- Fluo- Bord	(E)					 			 	 			 						
(at •ut)	ports per million	Ni-	(NO ₃)						-												
C) J.NHNN	90	Ghio-	C)	<u>0.5</u>	0.02	0 <u>*5</u>															
NEAR THE	Ę	Sul -	(SO ₄)																		
CHEER	etituents	Bicor-	(HCO ₃)	35 0.57	32	34 0.56															
ANTELOPE CREEK NEAR TENNANT (SIA. 10)	Minerol constituents	orbon-	(CO ₃)	0,00	0.00	0.00															
1	Mine	Potos- 0	L(X)																		
		Sodium	(0 N)	3.2 0.14	2.6	2.6 0.11															
		Mogne-	unis (6W)																		
		Colcium	(Co)	0.46	0.42	0.42						 									
1		л Н		7.+4 7.+4	7.5	7.7		 			 										
		Specific conductance (micromhos pH	0, 62, 10	60	56	22															
		7	%Sot	107	%	104							-						-	-	
		Dissofved oxygen	Edd	10*5	10.7	12.0		 				 _			 						
			1	Lη	39	35	-	 		_	 	 			 						
		Dischorge Temp in cfe in oF		19	31	56															
		Dote and time	P.S.T.	10-8-63 1040	11-5 1240	12-3 1200	Discontinued														
								-		-	 	 		-	 _	-					

TABLE D-2

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

ANTELOPE CREEK NEAR TENNANT (STA. le)

o Field pH.

b Laborotory pH.

c Sum of calcium and magnesium in epm.

d Heovy metals reported in table of "Spectrogrophic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

f Determined by oddition of onalyzed constituents.

h Amusti median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Heolth, Division of Laboratories, or United Stores Public Heolth Service. g Grovimetric determinotion.

-60-

Analyzed by 1 USGS Tur - Califormh bid - Califormh ity MPN/mi ч н ы ч -1 Hordness ee CoCO₃ Tatat N.C. 77 15 61 105 120 132 88 Per-16 79 5 4 13 Totel dis-solved solids n pom 126^f 195^f Other constituents As 0.00 As 0.01 0.0 0.0 POL POL POL Silica (SiO₈) 7. 읽 Boron (B) 당 1.0 1.0 0.2 7.0 equivalents per million ports per million 0.02 Fluo-ride (F) Ni-trate (NO₃) BEAR RIVER NEAR CAPETOWN (STA. 7b) 2.0 0.01 7.0 Chio-2.0 5.0 6.0 5.5 Sul -tate (SO_a) 23 32 0.67 Mineral constituents in Bicor-bonate (HCO.) 90 1.18 1.74 1.93 133 2.29 Carbon-ote (CO3) 0.00 2 0.07 5.17 4 0.13 1 0.13 Potos-(X) 0.03 0.03 Sodium (Na) 7.7 <u>9.0</u> 9.5 10 10 Magne-Bum (pM) 0.40 4.4 Calcium (Co) 2.10 2.40^c 2.640 48 2.40 28 5-1-8 8.3 8.0 8.0 7.7 **X** al.4 Specific conductance (micramhos of 25°C) 270 293 212 243 ppm %Sof Dissolved 8 66 100 66 95 10.8 9.2 10.2 9.3 Discharge Temp in cfs in oF 75 58 64 99 57 15 est. lo est. ast. 20 est. 20 est. Date ond time eompted P.S.T. 5/12/64 0820 6/3 0820 01/L0 11/8 9/15 0825

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Heavy metals reported in table of ''Spectragraphic Analyses of Surface Water''

Derived fram conductivity vs TDS curves.

Determined by addition of analyzed constituents

g Gravimetric determination.

Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

8 Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USGS); United Stores Department of the Interiar, Surveu of Reclamation (USBR); United Stores Public Headth) Survice (USPHS); Son Bennardino County Flood Control District (SBCFCD); Manapolitan Water District of Suchern California (MMD); Los Angeles Department of Mater and Power (LADMP); City of Las Angeles, Department of Public Headth, City of Lang Beach, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); ar California Department of Water Resources (DWR); as indicated.

8

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

~							 	 		 	 _	
		Hordness bid-Coliform ⁿ Analyzed as CoCO ₃ ¹¹ Y MPN/mi by ¹ Total N.C. ppm ppm										
	4	MPN/mi										
	Tur-	- pid -			-							
		Hordness as CoCO ₃ Total N.C. ppm	0	Э	э		 	 			 	
				75	25							
	Per-	cent sod - ium	27	긴	8							
L	Totol	solved solids in pom				_		 				
		Other constituents										
		SiO ₂)					 	 	 		 	
	u	Boron Silico (B) (SiO ₂)	0.0		0.0		 					
million	per million	Fluo- E rids (F)					 		 			
parts per million												
l	equivalents	Chio- ride (CI)	0.01 0.01	0.02 0.02	0.01		 	 	 	-		
		Sul - fote (SO4)					-					
	tituents	Bicor- bonate (HCO ₃)	44 0.72	42 0.69	40 0.66							
	Mineral constituents in	arbon- ate (CO ₃)	00.0	0000	000				 			
	Mine	Potos- Carbon - E suum (K) (CO ₃) (-
		Sodium F (N.0)	3.9 0.17	<u>3.5</u> 0.15	<u>3.3</u> 0.14		 	 	 	 	 	
		(pm) muis (Mg)		-			 -	 		 	 	
		Colcium (Ca)	0.56	0.54	0*50							
		Ŧ	4. L	7.8	7.8							
	Soucific	(micromhos at 25°C)	76	72	69							
	-	yoSot	105	<i>8</i> ,	TOT		 	 	 	 	 	
		Dissolvsd osygen ppm %Sot	1.01	10.4	12.3		 	 	 	 	 	
T			51	43	34							
		Dischorge Temp in cfs in of	4 est.	10 est.	10 est.	70						
		Dote ond time P.S.T.	10-8-63 1200	11-5 1335	12-3 1305	Discontinued				 	 	

-62-

ANALYSES OF SURFACE WATER

TABLE D-2 (Continued) NORTH COASTAL REGION (NO. 1) BUTTE CREEK NEAR MACDOEL (STA. 1d)

Field pH.

Laboratory pH.

c Sum of calcium and magnesium in epm.

Heavy metals reported in table of "Spectragraphic Analyses of Surface Water".

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

oronomic accommentant. Devolution of constructions of subjective monthy somplex made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service. Devolution and some respectively. Calculated from analyses of duplicate monthly somplex made is built of the stores Public Health Service (USPHS) ; Son Bernardine County Flood

M
SURFACE
Ь
ANALYSES

TER

. 1)

.ov)
REGION
COASTAL
HIMON

EEL HIVER NEAR DOS RIOS (STA. 5d)

	Andiyzed by f	T	USGS											
-	Hordness bid - Coliform ¹ / es CoCO ₃ ity MPN/mi Total N.C. h ppm	+												
	- mad	╈	¢1	200	7	CU	30	CJ	CJ	н	н	CJ	-	г
	500 N	mag	9	m	9	m	0	¢J.	5	5	5	77	5	10
	Hord es Co	mag	104	64	81	6	62	16	%	100	oti	Ħ	103	103
Para	Conf		17	Я	13	16	15	14	2	1 [†]	15	11	50	50
Total	solved bolids In ppm									129 ^f				1μ5 ^r
	Other constituents									ABS 0.0 As 0.00 Pol, 0.00				ABS <u>0.1</u> As <u>0.00</u> PD, <u>0.00</u>
	Silico (SiOg)									7.3				6.8
Ilion	Boron (B)		0.5	0.1	0.2	0.2	0.2	0.3	0.2	0.2	0.3	† * 0	0.6	0.0
parts per million equivalents per million	Fluo-	E								0.02				
rts per ents	Ni- trote	180.81								<u>3.44</u>				0.00
equivo	Chia-		6.8 0.19	2.6	3.5	4.3 0.12	2*0 0*0 <u>0</u>	11 °0	5.2 0.15	2.5	11.0	<u>5.5</u> 0.16	0.17	9.5 0.027
5	Sul - fote	+								<u>14</u> 0.29				24 0.50
fituents	Bicor- bonote	16021	78.1	74	<u>92</u> 1.51	106 1.74	75 1•23	1.70	<u>102</u> <u>1.67</u>	<u>116</u>	<u>1.93</u>	1.95	112 1.84	1.83 1.85
Mineral constituents	Carbon -	- 1	<u>3</u>	0.00	0.00	00.00	0.00	2 0.07	20-07	0.00	50.17	6 0.20	4 0.13	0000
Mine	Potos- C									<u>1.0</u> 0.03				0.0 0.02
	Sodium F	1	10 0.44	4.2 0.18	5.8 0.25	8.1 0.35	5.0	6.8 0.30	5.9 0.26	7.44 0.32	9•3 0•40	10 0.444	12	27.50 0.52
	Mogne-	(6w)		40	140			010		7.9	- 1-			9.6 0.7 <u>1</u>
	Catcium (Ca)	1	2.080	1.28°	1.02°	1.80°	1 <u>*54</u> c	<u>1.82</u> c	<u>1.84</u> c	27 1.35	2.200	2.22°	2.00°C	27 1.35
	I d	ما	0.3 0.3	7.6	7.6 8.0	<u>7.5</u> 8.0	7.3	8.4	8.4 8.4	8.1 8.1	8.5	8.4 8.5	8 4	17 °C
	conductance (micromhos at 25°C)		246	148	185	205	144	205	199	225	τ _η ς	252	LηZ	255
-	9 6	6 Sof	107	8	104	TOT	108	%	109	115	121	125	123	TOI
	Dissolved oxygen	ppm %Sof	[I.0I	10.0	9.21	12.0	12°71	0.11	8.6	7*6	10.1	9•5	4.6	8
		-	63	54]	¹³	117	127	L 17	67	74	74	83	83	42
	Discnorge Temp in cfs in oF		52	0011	155	108	931	132	1074	612	50	7.2	0.5	1.0
	Date and time compled		10/8/63 1500	11/14 1300	12/12 1350	1/7/64 1620	2/4 1500	3/11 00400	4/14 1430	5/11 1500	6/2 1545	7/14 1820	8/10 1645	5/1 1,6

a Field pH.

b Labaratory pH.

c Sum of colcium and magnessum in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves. -0 4

Determined by addition of analyzed constituents.

g Gravimetric determination.

h. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department at Public Health, Division at Laboratories, or United Stores Duplic Month Stores Department of the Internet. Burnet on Oversion at Laboratories, or United Stores Duplic Month Mo

		Anolyzed by [§]	nses											
	4	Hardness bid - Coliform as CaCO ₃ Ity MPN/mi Total N.C. nppm ppm ppm	Median 3.6	Maximum 62.	Minimum 0.06									
F	- n-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	н	20	15	100	15	m	5	ч	0	7	m	Ч
F		PPRC 3	阳	00	5	0	4	r-	æ	Ø	7	æ	50	14
		Hordn es Co Totol ppm	131	73	62	64	11	85	81	96	76	120	120	126
F	Par-	cent sod - ium	12	11	11	2	15	멁	3	11	21	13	21	21
ſ	Total	solved solved in ppm				-				113 ^f				153 ^f
		Othar constituents ^d								ABS 0.0 As 0.00 PO ₁₁ 0.05				P04 0.0 As 0.00
		Silice (SiOg)								8.0				<u>9.6</u>
	u	Boron (B)	0.2	0.0	0.1	0.2	1.0	0.2	1.0	1.0	0.5	0.1	0.2	0.2
multion	per million	Fluo- rida (F)								0.01				
corte car multion		Ni- trote (NO ₃)				-				2.0				0.01
	equivalents	Chia- rids (CI)	6.5 0.18	<u>3.2</u> 0.09	2.5 0.07	3.2 0.09	2.0	2.5 0.07	11.0 0.11	2.5	2.5	5.0 0.14	4.5 0.13	0.16
	Ę	Sul - fate (SO4)								<u>13</u> 0.27				21 0.44
	tituents	Bicor- banota (HCO ₃)	129 2.11	79 1.29	88 <u>1.44</u>	<u>76</u> 1.25	78 1.28	91. 1.49	<u>85</u> 1•39	100 1.64	<u>1.66</u>	<u>127</u> 2.08	114 1.87	<u>137</u> 2•25
	Mineral constituents	Cerban - 1 ate (CO _s) (8 0.27	0*00	0000	2 0.07	2 0.07	2 0.07	20.07	0.00	2 0+07	5 0.17	4 0.13	00.00
	Miner	Potas- C sium (K)					-			0.8			-	0.03
		Sodium (Na)	8.0 0.35	14.2 0.18	4.4 0.19	4.2 0.18	4.7 0.20	5•2 0•23	4.9 0.21	5•3 0•23	6.1 0.27	8.1 0.35	<u>7.6</u> 0.33	8.5 0-30
		Mogns- mus (Mg)								0.50				9.44 0.17
		Calcium (Ca)	2.62 ^c	1.46 ^c	1.58°	1.28	1.42°	<u>1.70</u> ^c	1.62	26 1.30	<u>1.94</u> °	2.40°	<u>5.40</u> °	<u>35</u> 1.75
Ì		مانه 🗶	8.0 8.4	7.6 8.0	7.4 8.0	<u>7.5</u> 8.3	7.6 8.3	7.6 8.5	7.8	8 20	8.2	8.2	8.2	a a a
	Consults	conductance (micromhos at 25°C)	284	164	175	163	158	186	173	195	209	256	259	275
1			102	5	26	lol	106	86	102	101	106	101	103	109
		Dissolved osygen ppm 9/oSo	9.2	10.1	9°TI	12.3	32.5	1.11	10.1	9*5	9.4	8.6	9.2	ę.
ł		Eo Eo E	69	55	51	$l_{1}l_{4}$	94	49	60	65	70	74	70	89
		Dischargs Temp in cfs in oF	1	ı	ı	r	1		ı	r	1	1	I	1
		Dote and time sompled P.S.T.	10/2/63 1120	11/13 1145	11/21 1150	1/14/64 1150	2/11 1200	3/10 1110	4/14 1220	5/12 54LL	6/3 1210	7/14 1310	8/11 1200	9/15 1200

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

EEL RIVER NEAR MCCANN (STA. 5)

a Field pH

b Lobaratory pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reparted in table af "Spectragraphic Analyses af Surface Water"

berived from conductivity vs TDS curves.

Determined by addition of analyzed canstituents.

g Gravimetric determination.

Ameni onlyses made by United Stores Goodonity of Work Boach (USGS). United Stores Department of the Interior, Buewould Reclamation (USR) United Stores (USRS). Stores Buewould Reclamation County Flood Amenion onlyses made by United Stores Goodonity of Work Boach (USGS). United Stores Department of the Interior, Buewould Reclamation County Flood h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

-64-

	pezí	Τ	-												
	Anolyzed by 1		USG.												
	bid - Coliform Ity MPN/mi In ppm		Med ian 2.3	Maximum 62.	Minimum 0.06										
Tur -	- piq 4 h ppm		01	25	10	40	10	01	5	-	01	ч	0	n	
	acos N C	e d	m		-3	21	m	-7	-7	m	m	5	m	m	
		Ead	136	69	78	68	72	80	83	94	104	132	129	119	
-	sod -		13	34	13	15	14	15	1	13	13	13	17	17	
Tọtai	solved solids									129 ^f				150 ^f	
	Other constituents									ABS 0.0 A8 0.00 PO4 0.05				PO4 0.05 As 0.00	
	Silica (SiO ₂)	1								피	-			9.0	
lion	Boron (B)		0.2	1.0	0*0	0.1	1-0	1.0	1.0	0.1	0.1	<u>1=0</u>	1.0	1.0	
r million per million	Fluo- ride	Ξ						-		0.2 0.01					
	Ni- trote	12021								<u>1.9</u> 0.03				0.02	
ports pe equivolents	Chlo- ride	-+	7.8 0.22	4.8 0.14	11 ° 0	4.5 0.13	2.8 0.08	<u>2.5</u> 0.07	4.8 0.14	<u>3.5</u> 0.10	3.0	5.0 0.14	<u>5.5</u> 0.16	9.5 0.27	
Ē	Sul - tote	("ne)								<u>15</u> 0.31				0.31	
tituents	Bicor- bonote	1 for a	142 2+33	<u>79</u> 1.29	90 1.48	66 <u>1.08</u>	84 1.38	91. 1.49	94 <u>1.54</u>	<u>1.75</u>	<u>115</u>	<u>141</u> 2+31	<u>142</u> 2•33	134 2•20	
Minerol constituents	Carbon-		<u>10</u> 0+33	0.00	0.00	<u>1</u> 0.03	0.00	1 0.03	<u>1</u> 0.03	2 0.07	4 0.13	70+23	6 0.20	0•13	
Mine	Potos- C	_								0*0				<u>1.6</u>	
	Sodium P	+	9•0 0•39	5.0 0.22	5.5 0.24	<u>5.5</u>	<u>5+5</u> 0+24	6.5 0.28	4.7 0.20	<u>6.6</u> 0.29	7.2 0.31	9.2 0.40	9.4 0.41	0.48	
	Mogne- S	/6w)	0/10	-1710	1/10	10	120	010	-710	8.9 0.73		010	010	11.0	
	Colcium N (Co)	1	2.72 ^c	1.38°	<u>1.56</u> °	1.36	1.44°	1.60°	. <u>99°</u> 1	23 1.15	2.08°	2.64°	2.58°	<u>30</u> <u>1+50</u>	
		م	8.4	7.6 8.1	7.6 8.2	7.6 8.3	7.7 8.2	7-9	8.0	8.2	8.5	8.4	8.4 8.6	8°3	
Specific	(micromhos pH at 25°C) B		291	156	176	159	162	183	1/1	208	227	281	279	569	
	solved C	10 2 0 t	154	66	86	104	100	110	102	105	เฮเ	109	131	175	
	Dissolv	m dd	13.8	10.1	11.5	12.2	9.11	2,21	10.1	10°0	0*11	9.6	11.5	15.0	
		-	02	22	Lμ	74	20	25	61	65	69	72	22	75	
	Dischorge Temp in cfs in of		754	4350	0617	4870	4890	2420	2690	1350	694	540	120	76	
	ond time eampted		10/2/63 1345	11/13 1430	0441 11/21	1/14/64 1415	2/11 1430	3/10 1330	1445 1445	5/12 1410	6/3 1420	7/14 1530	8/11 1430	9/15 1400	

o Field pH.

b Loborotory pM. c Sum of colcium and magnosium in opm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

f Datemined by addition of analyzed constituents.

g Gravimetric determination.

h Annual media and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratores, or United States Public Health Service

32305-0-6 6-61 200 370 Mineral onalyses made by United Stores Geological Survey, Quality of Water Bronch (USGS); United Stores Department of the Interior, Bureau of Reclamation (USBR); United Stores Quality Provided Stores Department of Stores Department of Market Stores Council of County Flood Control District (SECFCD); Marinopolitan Mater District of Storken Colifornia (MMD); Los Angeles Department of Mater and Power (LADMP); City of Los Angeles, Department of Public MedMH, Structs (USPHS); Son Benardino County Flood Public MedMH, Clebranics, Inc. (TTL); or California Department of Mater Resources (DMR); os indicated _

NORTH COASTAL REGION (NO. 1) EEL RIVER AT SCOTIA (STA. 6)

 _				-									_		-
	Anolyzed by 1	USGS													
	bid - Coliform ity MPN/ml														
Tur-	- the	4	in		.*	5	TO	*	Ø	10	7	œ	.1	m	
	N N		0		0	0	0	0	15	0	0	0	0	0	
		11	83		83	62	81	8	112	82	101	81	98	11	
	aod -	33	33		40	33	Ť	32	30	29	31	34	140	άς.	
Totel	solved solved in ppm									141				121	
	Other constituents ^d	Po _{li} <u>0.35</u>	PO _h 0.60		Po _{lt} 0.50	Pol, 0.35	Pot 0-45	Pol, 0.25	PO4 0.25	ABS 0.0 As 0.00 PO ₄ 0.15	PO4 0.45	Pol, 0.35	PO4 0.35	P04 0.01 A8 0.01	
	Silico (SiO _R)									77				52	
million	Baron (B)	0.1	0*2		0.2	0.2	0.2	0.3	0.1	0.0	<u>0.</u> 4	1.0	1.0	0.0	
 par mil	Flua- ride (F)				_					0.03					
ñ E I	Ni- trote (NO ₃)	1.4 1.4	7 • T	10.07	<u>6.6</u> 0.11	5.2 0.08	<u>5.1</u> 0.08	3.5	<u>3.9</u> 0.00	2.3 0.04	<u>3.3</u>	<u>1.5</u> 0.02	2.1 0.03	0.01 0.01	
aquivolants	Chia- rids (CI)	6.2	C*L	0.20	6.0 0.17	5.8 0.16	4.5 0.13	<u>6.5</u> 0.18	<u>5.2</u> 0.15	6.0 0.17	6.5 0.18	4.5 0.13	<u>6.6</u>	0.110 0.110	
ĕ	Sul - fots (SO4)									<u>15</u> 0.31				0.50	
stituents	Bicar- benate (HCO ₄)	112	119	1.95	1.93	<u>86</u> 1.41	<u>1.75</u>	128 2+10	118 1.93	<u>115</u> 1.88	148 2.43	<u>113</u> 1.85	126 2.07	<u>1.79</u>	
Minsral constituents	Corbon- ote (CO.)	1		00.00	0.00	20.07	<u>1</u> 0.03	0.00	0.00	0*00	20.07	0.00	0.00	00.00	
Mins	Potos- C sium									2.1 0.05					
	Sodium (No)	16		0.83	<u>25</u> 1.09	1 ⁴ 0.61	<u>16</u> 0.70	20 0.87	22 0.96	16 0.70	21 0.91	19 0.83	30 1+30	0.83	-
	-sugow Bium			-						0 0 0				8*) 0.64	
	Colcium (Co)	Ĵ,	u + -	1.05 ^c	<u>1.66</u> °	1.24c	1.56°	<u>1.84</u>	2.24 ^c	18 0.90	2.02	1.62 ^c	<u>1.96</u>	0.90 0.90	
	H al.		7.8	8.0	<u>9*1</u>	$\frac{7.6}{8.3}$	7 <u>•7</u> 8 <u>•3</u>	7.5 8.2	7.0	8.4 7.9	8.2 8.3	8.8 8.2	5.4 8.0	1.0	
Specific	(micromhos at 25°C)	206	267		281	188	221	266	318	228	284	245	325	245	
		104	100		TOT	96	103	104	102	106	100	107	П	100	
	Disso		10.4		6-11 .	0*II	9 . 2I	12.3	1.11	11.3	9.6	9•0	9•2	1.6	
	Tano in oF	63	23	2	43	τ'n	39	43	49	51	59	72	72	Ś	
	Dischorge Tsmp in cfs in oF		,		ı	r			1	I	ı	ı	1	1	
	Dote and time eampled P.S.T.	10/9/63	9/11 5707	1155	12/4 1140	1/7/64 1200	2/4 1145	3/5 1130	4/8 1025	5/6 1025	6/10 1025	7/7 1035	8/5 1030	9/2 1030	

-66 -

ANALYSES OF SURFACE WATER

TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER ABOVE HAMBURG RESERVOIR SITE (STA. 1c)

a Field pH.

b Laboratory pH.

c Sum af colcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water".

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

	Anolyzed by 1		USGS													
-	bid - Califormh A		un di la compositione di la comp	Max1mum 620.	Minimum 0.62				_						 	
	V Colif									10		m			 	
\vdash	10	UE	e 0	0	0	0	0 10	۳ 0	17 J	0	m 0	0	7		 	
	Hardness os CoCO3	Total N.C. ppm ppm	20	67		ft 5	52	65	106 1	26	10	22	76	72	 	
	- te -		34	38	t ¹	37	140	38	32 1	31	36	38	17	34	 	
- I ut ut		E d d								118 f				157 ^f	 	
F	T												-		 	
		Other constituents	Pol ₄ 0.35	PO4 0.70	PO4 0.45	PQ4 0-35	PO4 0.45	PO4 0.25	PO4 0.20	ABS 0.0 As 0.00 PQ_ 0.10	<u>لاتمار</u> 194	PQ_ <u>0.35</u>	PO4 <u>0.55</u>	POL 0.0 AN 0.01		
	Slico	(Si 0 _e)								ন				a.	 	
e 10	1 8	(8)	1.0	0.0	0*0	1.0	0.2	1.0	T. 0	0.1	1.0	T*0	0.1	T-0		
millio	Fluor	ride (F)								0.01						
ports per million	, i N	trate (NO ₃)	1.7 0.03	4.7 0.08	<u>6.6</u> 0.11	6.0	<u>11.0</u>	<u>5.3</u>	4.2 0.07	0.02	1.C.0	1.5	2.6 0.04	1.8 0.03		
ports per million	Chio-	(ICI)	4.2 0.12	4.6 0.13	5 0.14	<u>3.5</u> 0.10	2.5 0.07	4.5 0.13	6.0 0.17	5.0 0.14	3.0	0.11	<u>5.7</u> 0.16	1.1 <u>7</u>		
5	Sul -	fote (SO _e)								<u>19</u> J.t.J				21		
tituents		banate (HCO ₃)	8., 1.41	94 1.54	101 1.00	1.15	17 1.20	1. ⁴¹	1.08 1.77	<u>1:16</u> 1:16	0 1.38	<u>1.49</u>	<u>117</u>	<u>1.67</u>		
Mineral constituents		(CO ₃) (0.00	0.00	<u>1</u> 0+03	0.00	0.00	0.00	0		.33	- 13	0.00	0.00	 	
Miner) (X)	510		HIG					2.0 0.0				<u>5.2</u> 0.08	 	
	4 00000	(0 N)	13	<u>1,'</u> 0.83	25 <u>1.09</u>	<u>0.52</u>	<u>16</u> 0.70	18 0.78	23 1.10	1/ 0*01	1-	2r. 0.67	30 1-30	<u>18</u> 0.18	 	
	-euß	(Mg)	-10				HIO		014	1.				8.4 0.09	 	
	W	(Ca) (1.12c	<u>1.34</u> c	<u>1.46</u> c	- <u>90</u>	<u>1.14</u> c	<u>1.30</u> c	2.130	3 5	25-1	1.40°	<u>1.38</u>	0.75	 	
\vdash			77 77	7.9	7.4 8.3	<u>7.3</u> 3.1	7-3 8-1	7.5 1.	1.5	1	T-6 T-6	E	0 . T	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	
	Specific conductance (micramhos pH	1 25°C)	166 7	525	<u>8</u> 992	151	176	213	313 2	1/1 ×	18 -	22:	319	38	 	
	9 0 0 0 0 0 0 0 0	% Sat	81	81	06	-Č	94:	66	R	50T	102	£2T	109	82	 	
	Disectved	% wdd	í.3	8	10.3	11.5	2.1L	9.11	10.2	12.		10.	1.6	1		
-	die e		63	53	14.14	01	39	14 ()	44	53	5	~	- - -	-		
	Discharge Temp		1760	1.770	3010	3120	5810	14:00	3080	1030	1.1	0.	1.1	1360		
		p.S.T.	10/9/63 0840	0101	12/4 0955	1/1/64 1015	2 /4 1010	3/5 1000	4/8 ,85,	1,	01, Ollon	1/1	15	1/e 35.00		

Field pH.

Laboratary pH.

Sum of calcium and magnesium in epm.

Heavy metals reparted in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stotes Public Health Service.

32505-04 6-61 200 SPO Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Operationent of the Interior, Surveu of Reclamation (USBR); United States Geological Survey, Quality of Water Branch (USBR); United States Geological Survey, Survey, Quality of Survey, Survey, Quality of Water Branch (USBR); United States Department of Water and Power (LADWP); City of Las Angeles, Department of Public Health, LuDPH); City of Lang Burach, Quality Health, Survey, Cuty of Lang Burach, March (LBDPH); Tenninal Testing Laboration Laboration of Public Health, LuDPH); City of Lang Burach, March (LBDPH); Tenninal Testing Laboration of Public Health, LuDPH); City of Lang Burach, March (LBDPH); Tenninal Testing Laboration of Public Health, LudDPH); City of Lang Burach, March (LBDPH); Tenninal Testing Laboration of Public Health, LudDPH); City of Lang Burach, March (LBDPH); Tenninal Testing Laboration of Public Health, LudDPH); Tenninal Testing Laboration of Public Health, Lu

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER BELOW IRON GATE DAM (STA. 11)

	-	-	_													
		Anolyzed by 1		USGS												
	*	bid - Coliform"		Median 2.3	Maximum 620.	Minimum 0.23										
	Tur-	- piq -		ŝ	5	m	0	10	CI.	9	ы	CJ	н	ŝ	н	
		0	Zdd	0	Ч	0	5	0	-	5	0	0		0	°	
			Total ppm	78	58	62	64	63	64	68	52	52	74	87	78	
	Per-	eod -		52	15	19	75	74	15	18	15	15	19	52	53	
L	Totel	solids	in ppm								76 [£]				127	
		Other constituents d									ABS 0.0 AB 0.00 PO4 0.05				PO4 0.15	
		Silico	(2:0 ²)								77				গ্র	
	lion	Boron	9	1.0	0.0	1.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	0.1	1+0	
million	per million		(E)								0.1					
ports par million	equivoisnts	-in	(NO ₃)								2.0 0.03				0.01	
bd	equivo	Chio-		<u>5.0</u>	3.0 0.08	2 0 0 00	2.8 0.08	2.8 0.08	2.5	3.0 0.08	<u>1.0</u>	<u>1.5</u> 0.04	2.5	<u>3.5</u> 0.10	4.9 0.14	
	<u>e</u>	Sul -	(SO4)								<u>5.0</u> 0.10				14 0•29	
	stifuanta	Bicor -	(HCO ₃)	<u>104</u> <u>1.70</u>	1.15	80 1.31	<u>68</u> 11.1	78 1.28	77 1.26	<u>13</u> 1.20	<u>65</u> 1.07	-02 1 - 02	89 1.46	<u>1.70</u>	<u>1.72</u>	
	Minsroi constitusnts		(C03)	00.00	0.00	0000	20.07	00.00	0.00	2 0.07	0.00	<u>1</u> 0.03	0.00	2 0.07	0.00	
	Mins	Potos- C	E(X)								0.6				0.05	
			(0 N)	10 0.414	4.8 0.21	7.0 0.30	3.8	4.0 0.20	5.1 0.22	7.0 0.30	1.4 1.0	4.4 0.19	8.0 0.35	<u>13</u> 0.57	0.48	
		-subow	(Mg)								61.0				7.44 0.61	
		Colcium	(Ca)	1.50	0.16	1.24 ^c	1.28°	1.26°	1.28°	1.37	11	1.04	1.48°	<u>1.74</u> c	<u>19</u> 0.95	
		H	ം പ	8.2 8.0	7.4 8.0	7.5	7.4 8.3	7.4 8.2	<u>7.5</u> 8.2	7.6 8.4	<u>7-7</u> 8-1	<u>7.5</u> 8.3	7-9 8.0	8.0 8.4	8.1	
	Specific	conductance (micromhos	of 25°C)	195	138	156	135	140	157	158	611	115	175	223	509	
			l i	115	%	100	102	1.04	96	7.6	96	94	98	101	92	
		Dissolvs d osygan	mad	10.7	10.5	6.11	7.21	12.6	7.11	10.5	10.2	2.6	8.8	1.6	8.7	
		Temp in oF		ŕó	53	94	143	45	¹⁴⁰	54	57	58	70	10	65	
		Dischorge Temp in cfs in oF		304.0	15100	12500	16200	22200	14200	17900	13100	9420	3860	2880	1,000	
		Dots ond time		10/3//J 0935	41/11 10401	12/10 1345	1/15/64 1105	2/12 2020	3/11 0945	4/15 0920	5/13 0920	6/14 0850	7/15 1215	8/12 0955	9/16 0935	

ANALYSES OF SURFACE WATER

TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

KLAMATH RIVER NEAR KLAMATH (STA. 3)

b Laboratory pH. e Field pH.

c Sum of calcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determinotion.

Amuel median and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineal analyses made by United Stores Geological Survey, Quality of Water Branch (USGS), United Stores Department of the Interior, Bureau of Reclamation (USBR), United Stores Public Headeh Service (USPHS), Son Bennardine County Flood Cantal District (SRCFCD), Mernopolitan Water District of Southan California (AWD). Las Angeles Department of Pawer and Pawer (LADWP), City of Las Angeles, Department of Public Headeh (LADPH), City of Lang Beach, Department of Public Health (LBDPH), Terminal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWR); as indicated.

32505-0-H 6-61 200 SP0

Anglyzed by 1 Tur-bid - Coliformh (ty MPN/mi ч 4 \sim Hordness os CoCO3 Totol N.C. ppm ppm 0 20 58 60 68 Total Per-dis-solved cont solids ium-ium-님 8 61 51 19 15 f Other constituents ABS 0.0 As 0.00 Pol, 0.30 As 0.00 0.05 ABS POh Silico (SiO₂) 2 8 Boron (B) 0.2 1.0 0.2 1.0 0*0 0.0 0.0 1.0 equivolents per million 5 ports per million Fluo-ride (F) 0.00 KLAMATH RIVER AT ORLEANS (STA. 2c) Ni-trote (NO₃) 10.0 0.01 Chio-1.5 3.0 4.6 3.8 1.5 2.5 3.0 0.03 5.4 0.31 6.0 Sul -fote (SO_a) Ē Minerol constituents Bicor-bonote (HCO3) 87 81 1.20 1.25 85 1.07 59.07 1.87 201 Carbon-ote (CO₃) 0.00 00.00 0000 3.10 0.00 0.00 20.07 1.3 1 0.03 Potos-erum (K) 2.4 0.8 Sodium (No) 17 1.30 4.5 0.41 18 0.78 7.8 9.0 0.30 0.30 -angow (pM) 0.49 9.2 Colcium (Co) .80 1.50 0.92 1.480 1.16 1.20 1.300 0.55 0.80 8.0 7.6 1-18 7.8 8.1 8.2 8.1 8.2 7.5 E ale Specific conductance (micromhos at 25°C) 188 252 179 146 164 ppm %Sol 111 Dissolved osygen 108 10 108 108 112 106 4.11 13.4 13.5 Temp in oF 23 65 24 17 542 5 ħL. Dischorge in cfe 1910 00111 est. 6800 8780 7020 Dote and time eampled P.S.T. 1/16/64 1325 9/14 2/10 3/9 4/13 11/5 6/2 7/13 8/10

Field pH. 0 Lobarotory pH. ه.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water" Sum of colcium and magnesium in epm.

,

Derived from conductivity vs TDS curves.

Determined by addition of onalyzed constituents.

Grovimetric determination. σ

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Drivision of Laboratories, or United States Public Health Service æ

32505-D-H 6-61 200 Mmeral onalyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USGR); United States Department of More and Power (LADWP); City of Las Angeles, Department of States Department of More and Power (LADWP); City of Las Angeles, Department of More and Power (LADWP); City of Las Angeles, Department of More and Power (LADWP); City of Las Angeles, Department of More and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); Terminal Testing Lebentaeit, Inc. (TTL); or California Department of More and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); Terminal Testing Lebentaeit, Inc. (TTL); or California Department of More and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); Terminal Testing Lebentaeits, Inc. (TTL); or California Department of More and Power (LADWP); City of Las Angeles, Department of Public Health (LADPH); Terminal Testing Lebentaeits, Inc. (TTL); or California Department of More Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NOFTH COASTAL REGION (NO. 1)

d) WATER	
TABLE D-2 (Continued) YSES OF SURFACE W	
- FO	
TABLE ANALYSES	

NORTH COASTAL REGION (NO. 1)

KLAUATH RIVER NEAR SEIAD VALLEY (STA. 2b)

	Andread	by 1 by 1												
	A month of the	mppm mppm mppm mppm mppm mppm mppm mpp												
	101	h ppm	m	ŝ	Ч	m	10	0	~	\$	9	m	7	~
		N C O	0	0	0	0	0	0	7	0	0	0	0	0
			79	8	83	65	80	88	106	85	88	16	101	8
	Per-		29	30	35	59	52	5#	26	52	214	56	35	35
Tate	10101	solved solids In ppm								125 f				164 2
		Other constituents d	Poh 0.40	PO4, 0.50	PO ₄ 0.445	PO4 0.25	PO4 0.40	PO ₄ 0.20	PO4 0.25	ABS 0.0 As 0.00 PO4 0.10	PO4 0-30	PO1, 0.20	PO4 0.40	ABS <u>0.0</u> As <u>0.01</u> Po ₄ <u>0.50</u>
		(SiO ₂)								8				52
0		Boron (B)	1.0	0	0.1	0.1	0.3	0.2	1.0	0.1	0.2	0.2	0.2	1.0
r million	IRC IRC	Fluo- ride (F)								0.2 0.01				
parts per million		Ni- trate (NO ₃)	<u>1.4</u>	5.0 0.08	6.4 0.10	1. 4 0.07	4 <u>.3</u> 0.07	4.9 0.08	2.9	<u>1.0</u>	<u>5.4</u>	<u>1.1</u>	<u>1.6</u> 0.03	0.03
à	Ainba	Chio- ride (CI)	0.17	6.6	<u>3.0</u> 0.08	0.14	2.5	<u>5.0</u>	<u>5.0</u> 0.14	6.8 0.19	4.0 0.11	<u>3.0</u> 0.08	<u>6.5</u> 0.18	<u>6.3</u> 0.18
č		Sul ~ fots (SO4)								10 0.21				0.40
stituent		Bicar- banate (HCO ₃)	<u>116</u> 1.90	121	<u>115</u> 1.88	20 1.48	$\frac{106}{1.74}$	<u>121</u> <u>1.98</u>	<u>1.84</u>	1.80	<u>118</u> <u>1.93</u>	110	<u>132</u> 2.16	<u>1,80</u>
Mineral constituents		Corbon- ots (CO _S)	0.00	0.00	0*00	0,000	<u>1</u> 0.03	0.00	20.07	0.00	2 0.07	4 0.13	0.00	000
Mir	ſ	Potas- sium (K)								<u>1.8</u> 0.05				0.00 0.00
		Sadium (Na)	<u>15</u> 0.65	<u>17</u>	21 0.91	12	<u>12</u> 0.52	<u>13</u> 0+57	<u>17</u> 0.74	<u>11</u>	<u>13</u> 0.57	<u>15</u> 0.65	<u>25</u> 1.09	0.78
		Magns- sum (Mg)								<u>9.7</u> 0.80				<u>0.75</u>
		Catcium (Ca)	1.56°	1.72	1.66	1.30	1.60°	1.76°	2.12	<u>18</u> 0.90	1.76°	1.82 ^c	2.02°	<u>17</u> 0.85
		E alo	0 0 0 0	8.2	7.8 8.0	7.6	7.7	7.9	8.0	8.4 8.0	8 5 8 5	8 • 3 8 • 4	0 0 0 10	
	Spacific	conductance (micramhos at 25°C)	714	247	264	182	200	536	279	205	519	203	311	239
			106	102	102	104	103	107	104	107	107	211	113	100
		Dissolved osygan ppm %Sq	6. 8.	10.6	12.1	12.5	7.21	12.3	2.11	11.5	10.2	6 .0	9.4	6- 6
-		1	63	53	¹ ,13	7+5	10	145	20	20	99	72	72	75
		Discharge Tamp in cfs in OF	2000	2380	4300	4360	5420	3040	2000	2430	3000	1290	1240	1500
		and time sampled P.S.T.	10/9/63 1100	11/6 1235	12/4 1215	1/7/64 1305	2/4 1225	3/5 1215	4/8 1100	5/6 1105	6/10 1135	0†[1 1/2	8/5 1105	9/2 1130

a Field pH.

Laboratary pH.

c Sum af calcium and magnesium in epm.

d Heavy metals reported in table af "Spectragraphic Analyses af Surface Water"

Derived fram canductivity vs TDS curves. e

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Sovice

32505-D-H 6-61 200 SPO Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Quality Fields); San Bernardian County Flood Contral District (SBCFCD); Matropolitane Water District of Southarn California (MMD); Los Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Public Medith, Erry of Lang Beach, Department of Public Medith (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Mater Resources (DWR); as indicated.

TABLE D-2 (Contin

) i con	5									
	h Analyzed by i	SDSU									
	Hordness bid - Coliferm ^h ee CaCO ₃ ity MPN/mi Tatol N.C. ppm ppm	Medi a n 2.3	Maximum 23.	Minimum 0.62							
		. (1	æ	-	m		~	9	CI	0	
		0	0	0	0	0	0	9	0	0	
			60	65	63	62	68	72	20	917	
	Line Cont	58	50	27	50	19	19	51	16	16	
Total	asived solide ppm								74 I		
	Other constituents $^{\vec{d}}$								ABS 0+1 As 0+00 Pol4 0+05		
	Silico (SiO ₂)								51		
e li	1 5	1.0	0.0	0.1	0.1	0.0	0*5	0.0	0 • 0	<u>•</u> •	
r million per million	Fluo- ride (F)								0.00		
									<u>1.8</u> 0.03		
ports pe	Chio- ride (CI)	5.2 0.15	<u>3*</u> ि <u>0•08</u>	<u>3.0</u> 0.08	<u>3.5</u> 0.10	<u>3.2</u> 0.09	2.5 0.07	<u>2.5</u> 0.07	<u>1.0</u>	<u>1.0</u> 0.03	
Ē	Sul - fote (SO4)								<u>5.0</u> 0.10		
stituents	Bicar - banate (HCO ₃)	1.72 1.72	76 1•25	<u>85</u> 1.39	74 1.21	78 1.28	<u>84</u> 1.38	80 1.31	62 1.02	58 0.95	
Mineral constituents	Carbon- ofe (CO3)	0000	00.00	0.00	2 0.07	0.00	1 0.03	0.00	0000	000.0	
Mine	Potas- erum (K)								0.8		
	Sodium (No)	13 0+57	0.30	11 0.48	7.2 0.31	6.6 0.29	7.4 0.32	9•0 0•39	4.5 0.20	3.1	
	Mogne- sium (Mg)								5.5		
	Colcium (Co)	1.40	1.20	1.30	1.26	1.24 ^c	1.36	1.41°	<u>0.55</u>	0.92	
	ন আত	8.2	<u>6-2</u>	7.5 8.1	<u>7.55</u> 8.3	7.5 8.2	<u>1-8</u>	7.8	8.1	<u>7.7</u> 8.2	
	Specific conductance (micromhos of 25°C)	196	154	179	Lητ	Τ4T	163	177	114	TOT	
	ved en %Sof	108	102	105	107	OTT	108	1.08	107	100	
	Diesolved osygen ppm %Sat	6.6	1.11	12.7	13.2	13. ⁴⁴	12.8	11.9	11.0	10•0	
	in oF	99	52	44	42	£4	517	21	-26	- 29	
	Dischorge Temp in cfs in OF	2500	8050	8100	8220	11100	6800	7800	8780	7020	ā.
	Dote and time P.S.T.	10/1/63 1200	11/12 1300	12/9 1515	1/16/64 1215	2/10 1245	3/9 1200	4/13 1320	5/11 1245	°∕2 1235	Discontin

a Field pH

b Laboratary pH.

Heavy metals reparted in table of "Spectrographic Analyses of Surface Water" c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

32505-0-8 6-61 200 370 Mineral analyses made by United Strete Geological Survey. Quality of Water Branch (USGS); United States Department of the Interior, Surveu of Reclamation (USRR); United States Department of Water States Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Policie Headth, LaDPH); City of Lang Beach, Department of Policie Headth, Tennual Testing Laborator and Power of Department of Water Resources (DWR); os indicated.

ANALIGED OF SORTACE WALES NOPTH COASTAL REGION (NO. 1)

KLANATH NIVER AT SOMESBAR (STA. 2)

_														
	Anolyzed by I		SOSU											
	bid - Coliformh		Median 6.2	Maximum 230.	Minimum 0.62									
		udd is	-1	30	07	25	45	35	10	10	¢J	CJ	¢J	4
	Hordness to CoCO ₃	Total N.C. PPm PPm	ч	7	m	9	e	4	ເບ	5	5	m	m	<u>ن</u>
	Hord es C	Ppm	17	25	Lή	49	94	$L_{\uparrow\uparrow}$	54	59	92	83	87	88
	Per- cent eod -	5	10	13	13	77	15	16	6	្ព	12	1	10	10
	solved	m opm								83 f				JOIL
		Uther constituents								ABS 0.0 As 0.00 P01, 0.10				PO4 0.00 As 0.00
	Silico	(SiO ₂)								6.9				10
	5	(8)	0*0	1.0	0*0	0*0	0.0	0.0	0.0	0.1	0.1	0.1	0.1	
million	Fluo-	(F)								0.1				
ports par million	Ni-	trots (NO ₃)								<u>1.8</u> 0.03				0.01
8	Chlo-	rids (CD)	1, 0	3.8	3.8 0.11	3.5	2°5 0.00	3.5	11°0	2.5 U.07	2.0	2.5	2.0	2°00
Ē	Sul -	tots (SO ₄)								0.19				10 0.21
stituents	Bicor-	bonote (HCO ₃)	89 1.46	59 0.97	54 0.89	<u>53</u> 0.87	<u>53</u> 0.87	52 0.85	6 <u>3</u> 1.03	<u>66</u> <u>1.08</u>	<u>83</u> 1•36	<u>91</u> 1.49	98 1.61	1.64 1.64
Minsrol constituents		(CO ₃)	0*00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2 0+07	3 0+10	2 0.07	0.00
Mint		E(X)								0.0				0.03
	Sodium	(0 N)	<u>3. (</u> 0. 10	3.5	3.2	3.7	3.6 0.10	4.1 0.18	2.6	3.9	4.7 0.20	4 <u>.8</u> 0.21	4.5 0.20	0.20
	Mogne-	(BM)							-	4) 0.33				9E-0
	Colcium	(Co)	1.48°	1.04 ^c	0.95 ^c	° 8 €•0	0.92	<u>94</u> °	1.080	<u>17</u> 0.85	1.52	.00°E	1.74°	28 1.10
	Hd	م10	8.2	7.04	7.2	7.2	7.3	7 <u>.3</u> 8.0	7.8 3.1	7.8	8.4	8.0	8.0	8.5 8.5
	Specific conductance (micromhos pH	of 25°C)	155	121	OTT	loT	103	103	118	129	165	182	189	185
		121	110	66	98	76	lol	102	106	104	103	103	103	lol
	Dissolvsd osygen	Edd	10.2	10.1	11. ⁴	12.1	9.11	7-11	10.9	10.0	9•3	4•6	9.3	-t• 6
	Tamp in oF	-	29	55	48	54	Lη	64	58	64	69	68	69	67
	Dischorgs Tamp in chs in oF		365	1200	1570	1450	1590	1640	019	530	529	190	88	101
	Dote and time		10/3/63 1440	11/12 1700	12/10 1540	1/15/64 0845	2/10 1745	3/9 1625	4/13 1740	5/11 1640	6/2 1715	7/13 1615	8/10 1605	9/14 1640

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

TABLE D-2 (Continued)

MAD RIVER NEAR ARCATA (STA. 68.)

a Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service.

Mineel analyses made by United Stores Geological Survey, Quality of Water Branch (USGS); United Stores Deportment of the Interior, Sureou of Reclamation (USBR); United Stores Public Headth Service (USPHS); 5 Son Bernordino County Flood Convol District (SBCFCD); Metropolition Marer District of Southern California (MMD); Las Angeles Deportment of Mater and Power (LADMP); City of Las Angeles, Deportment of Metropolition Marer of Souther District of Southern California (MMD); Las Angeles Deportment of Mater and Power (LADMP); City of Las Angeles, Deportment of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 District (SBCFCD); Metropolition Marer District of Southern California Deportment of Mater and Power (LADMP); City of Las Angeles, Deportment of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LaDPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LADPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, LaDPH); City of Lang Beach, Deportment of 2000 Southern of Public Headth, Deportment of 2000 Southern of Public Headth, City of Lang Beach, Deportment of 2000 Southern of 2000

-72-

32505-D-H 6-61 200 SPO

	5					_									
	Anciyzed by 1		USGS												
	bid - Coliform" ity MPN/mi		Med ia n ó.2	Maxtmum 620.	Minimum 0.62										
Tur-		:	ч	017	0	542	15	CJ	CJ	ы	ы	CJ	CJ	ч	
	Hordness les CoCO ₃	N	80	4	-7	5	m	0	5	►	9	t	Ŀ-	শ	
	Hord es Co	Toto! ppm	108	52	59	54	55	64	70	79	90	104	104	TI I	
-	cent and		14	18	16	19	20	19	18	16	17	15	16	7	
Totel	solved solids	u ppm								113 [£]				1.50	
	Other section of d									ABS 0+1 As 0+00 Pout 0+10				F04 0.00 AB 0.00	
	Silico	(SiO ₂)								켊				2.3	
lion	Boren	8	0*0	0.0	0.0	0.0	0.0	1°0	0*0	0.0	0.2	0.1	0.2	T.0	
r multion per muttion	Fluo-									0.3					
	-iN	(NO ₃)								2.1 0.03		•		0.8 0.01	
ports pe equivolents	Chio-	(C)	0*9	5.5 0.16	<u>3.9</u> 0.11	3.0	3.5	<u>5.5</u> 0.16	5.8 0.16	2.0	<u>1.5</u> 0.04	3.0	<u>4.5</u> 0.13	4.9 0.14	
. <u>e</u>	Sul -	(so ₄)								<u>15</u> 0.31				24 0.50	
tituents		(HCO ₃)	2,00	<u>59</u> 0.97	67 1.10	60 0.98	64 1.05	90 1.48	1.26	<u>88</u> <u>1.44</u>	<u>97</u> 1.59	<u>118</u> 1.93	<u>116</u>	121	
Minerol constituents	1	(C03)	0.00	0000	0000	00.00	0.00	0.00	1 0.03	0.00	30.10	0.00	1 0.03	00.00	
Miner	0	E(¥)								0.0				0.03 0.03	
	Sodium	(0 N)	<u>T.y</u> 0.34	5+2 0+23	5.0	6.0 0.26	6.4 0.28	<u>6.9</u> 0.30	6.8 0.30	7.2 0.31	8.3 0.36	8.6 0.37	9.0 0.39	0°38 0°38	
	togne- s	(6 W)				010	010			3.4				3.9 0.32	
	Colcium	(ce)	2.16°	1,040	1.18	1.08	1.10	1.28°	<u>1.40</u>	26 1.30	1.80	2.08	2.08	38 1.90	
	H	a t,o	7.8 8.2	7.3 8.0	7.8	7.9	7.4 8.2	7.4 8.1	7.5	8.0 8.1	<u>5•8</u>	8.0	7.8 8.3	8.0	
	conductance (micromitos	1 25-0	243	132	145	131	0†T	154	165	188	209	234	ΓħS	252	
		1.5	100	95	66	102	102	66	lol	103	103	109	66	8	
	Dissolved	6 wdd	9*6	1.01	12.0	2.21	6•11	1.1	10.6	10.3	10.0	7.6	1.6	7.6	
F		-	64	55	45	94	48	47	56	60	63	Ę	68	29	
	Discnorge Temp in cfs in oF		£4	1510	680	300	890	4.72	285	149	105	25	715	26	
	Date ond time	P.S.T.	10/2/63 0845	11/13 0945	1000 1000	1/14/64 0930	2/11 1010	3/10 0910	0001 1000	5/12 1015	6/3 0920	0500 114	8/11 0955	9/15 0915	

ANALYSES OF SURFACE WATER MATTOLE RIVER NEAR PETROLIA (STA. 7a) NORTH COASTAL REGION (NO. 1))

e Field pH.

b Leboratory pH.

Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. •

Gravimetric determination.

h Annuel median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United Startes Public Health Service.

Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USCS); United Stores Department of the Interior, Buresu of Reclamation (USCR); United Stores Department of Water Stores Department of Public Headth, Stores Uter Water Stores Department of Public Headth, Stores Ottores Department of Public Headth, Stores Ottores Department of Mater Resources (DWP); City of Las Angeles Department of Public Headth, LaDPH); City of Las Angeles Department of Public Headth, LaDPH); City of Las Angeles Department of Public Headth, LaDPH); City of Las Angeles Department of Public Headth, LaDPH); Ten Mater Stores Department of Mater Resources (DWF); or Sudjected Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of Las Angeles Department of Mater Resources (DWF); Tity of City of

32505-D-H 6-61 200 SPO

														_		
		Analyzed by I		SDSU												
	4	bid - Coliform" Ity MPN/ml														
	Tur-	- pid -		C1	700	9	52	70	¢1	9	-		¢1	¢1	¢1	
		CO3	N	31	6	2	00	5	00	9	<u>}-</u>	0	18	27	35	
			Total PPm	138	70	78	8	63		64	02	18	121	120	137	
	Per-	cent sod -		17	10	10	12	12	1	12	11	11	77	18	17	
	Totel	solved									1 68				189 1	
		Other constituents ^d									ABS 0.0 As 0.00 Pol 0.10				PO4 0.00 As 0.00	
		Silica	(anic)								8 . 3				2.3	
	lion	Boron		0.4	1.0	1.0	<u></u>	0.1	1.0	0.0	1.0	0.0	0.2	0.3	0.3	
ports par multion	per million	Fluo-			-						0.00					
ports per million	equivolents p	N:-	-								1.8 0.03				0.0 0.01	
G	aquivo	Chlo- ride	(ci)	20	2.1 0.00	<u>2.5</u> 0.07	<u>3.7</u> 0.10	5°-0	2.5	3.2 0.09	0.0	<u>3.0</u>	8.0 0.23	<u>16</u> 0.45	24 0.68	
	5	Sul - fore									8.0 0.17				<u>32</u> 0+67	
	constituents	Bicor- bonote	(HCO ₃)	1.87	$\frac{7^4}{1.21}$	<u>ी.49</u>	88 1.444	$\frac{7}{1.16}$	90 1.48	<u>1.16</u>	77 1.26	88 <u>1.444</u>	112 1.84	101 1.06	2.05	
	Minsrol cor		(co ₃)	5 0.27	0.00	0.00	0.00	0.00	<u>1</u> 0.03	0.00	0.00	2 0.07	7 0.23	6 0.20	0*00	
	Win	Potos-									0.0				1.44 0.04	
	1	Sadium	(0 N)	<u>13</u> 0.57	<u>3.7</u> 0.16	4.1 0.18	5.0	3.8	4.7 0.20	3.8 0.17	4.0 0.17	13-0 - 51	<u>0.40</u>	<u>12</u> 0.52	<u>13</u> 0.57	
			(6W)								<u>6.1</u> 0.50				9.6 0.79	
		Colcium	(0.0)	2.70	1.400	1.08°	1.61	1.26	1.66°	1.28°	18 0.90	1.68°	2.42°	2.40°	<u>39</u> 1.95	
	_	H	#1,0	8 4	7.8 7.8	<u>7.9</u>	<u>7.7</u>	7.1 8.1	8.0 8.3	7.3	1.1	0.0 0.0 0.0 0.0	8 4 8 6	8.4 8.6	8.3 8.1	
	Specific	conductance (micromhos		332	155	182	173	134	179	136	151	179	267	285	334	
			%Sat	211	86	103	102	108	102	OTT	104	106	ήττ	911	123	
		Dissolved oxygen	Edd	10.1	10.5	13.0	12.3	12.5	0.21	10.5	9.4	0*6	8.9	0.6	10.5	
	-	Tamp n oF		67	25	40	^{1,3}	94	57	62	67	72	81	82	24	
		Dischorgs Tamp in cfs in oF		13	3150	535	608	2380	560	100	42	259	35	13	6.8	
		Dote and time sompled	P.S.T.	10/8/63 1525	11/14 1330	12/12 1435	1/7/64 1655	2/4 1530	3/11 1015	1600 1600	5/11 1530	6/2 1610	7/14 1840	8/10 1715	9/1 1530	

ANALYSES OF SURFACE WATER

TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

MIDDLE FORK EEL RIVER AT DOS RIOS (STA. 5c)

o Field pH.

b Loboratory pH.

c Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

h Annuel median and range, respectively. Colculated from analyses of duplicate manthly samples made by Collifornia Department of Public Health, Division of Laboratories, or United Stores Public Health Service

Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USCS), United Stores Department of the Interor, Bureau of Reclamation (USBR), United Stores Geological Survey, Quality of Water Branch (USCS), United Stores Colorison (USPR), Structure of Reclamation (USBR), United Stores Public Medhy Service (USPHS), Son Bernardino County Flood Control District (SIGCFCD): Metropolitan Water District of Southann California (MMD), Los Angeles Department of Mener of Pawer of Reclamation (USBR), United Stores Public Medhy Service (USPHS), Son Bernardino County Flood Public Health (LBDPH); Termunal Testing Laboratoria: Inc. (TTL); or California Department of Water Resources (DWR); or indicated

2

32505-1-H 6-61 200

_																
		Analyzed by f	USGS													
	1	bid - Colitorm ⁿ ity MPN/ml														
	Tur-	- piq Ati u	~	220	In .	10	10	CJ	0	Ч	м	0	-	¢J		
ſ		N C O 3	UN.	m	0	N	0	-	-	0	0	0	-	ŝ		
			130	25	57	40	49	67	76	82	101	711	711	121		
	Der-	tent neu nu	21	17	20	51	20	19	20	19	19	21	54	23		
	Totol	solved solids in ppm								113 ¹				182 ^f		
		Other constituents ^d								ABS 0.0 AB 0.00 PO1, 0.05				ABS 0.1 As 0.00 Pol, 0.00		
		Silico (SiO ₂)								2				7		
	million	Boron (B)	2.3	1.0	0.th	0.2	0*5	0 <u>•</u> 4	0.5	<u></u> 7	0.8	1.5	1.8	2.0		
	psr mi	Fluo- rids (F)								0.2						
	equivolents per million									2.3 0.04				0.3		
	bAinbe	Chio- ride (Ci)	25 0.71	1.1 0.03	<u>4.5</u> 0.13	4.8 0.14	4.2 0.12	5 <u>.</u> 0	8 <u>*</u> 0	4 <u>.5</u> 0.13	<u>9.0</u>	<u>14</u> 0.39	<u>19</u> 0.54	25		
	Ē	Sul - fots (SO4)								<u>0+15</u>				7.0 0.15		
	stituenti	Bicor - bonote (HCO ₃)	<u>153</u> 2.51	27 0.414	70	<u>56</u> 0.92	60 86.0	$\frac{81}{1.33}$	$\frac{91}{1*49}$	1.00	2.00	<u>145</u> 2.38	139 2.28	141 2+31		
	Minerol constituents	Corbon- ots (CO ₃)	00.00	0.00	0*00	0.00	0.00	0*00	0.00	0.00 0.00	2 0.07	0.00	1 0.03	0*00		
	Min	Potos- sum (K)								0.02				<u>1.6</u> 0.04		
		Sodium (No)	<u>16</u>	2.2	<u>(.7</u>	0.26	<u>5.8</u> 0.25	<u>7.2</u> 0.31	<u>8.5</u> 0.37	8 <u>•7</u> 0•38	11 0.48	<u>14</u> 0.01	17 <u>17</u>	<u>17</u>		
		Mogns- sum (Mg)								7.8 0.64				12.0		
		Colcium (Co)	2.60 ^c	0.50	3 <u>11</u> ,C	.96*0	.86	<u>1.34</u> °	1.52°	20	2.020	<u>2.34</u> °	2.34c	29		
		L alla	7.8	7.2	<u>7.6</u>	7. ⁴	<u>0.7</u>	8.4 8.1	8.2	8 2	8.3 4.8	8.4 8.0	8. 	8 9 0		
	Snerifie	anductance (micromhos at 25°C)	325	62	142	118	120	164	178	197	237	290	296	312		
			103	8	113	103	108	6	108	109	125	108	122	109		
		Dissolved osygan ppm %Sat	0+3	10.0	12.8	6.11	12.2	10.3	9.6	9•3	10.5	8.3	9•1	9.6		
		in of	éŢ	54	48	91	48	L†	68	72	73	83	85	69		
		Dischorgs Tamp in c1s in OF	m	3880	120	292	269	68	99	36	15	2.6	2•1	1.0		
		Dote and time sampled P.S.T.	10/8/63 1420	11/14 1350	12/12 1320	1/7/64 1555	2/4 1410	3/11 0900	1345 1345	5/11 1420	6/2 1520	01/1 1/1/1	8/10 1620	9/1 1350		

b Loboratory pH. a Field pH.

c Sum of calcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Woter"

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and tange, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Operatiment of the Interior, Sureou of Reclamation (USBR), United States Polici Readed Society Flood Control District (SBCFCD); Merropoliton Water District of Southern California (MMD); Los Angeles Operatiment of Mater and Power (LADWP); City of Los Angeles, Operationent of Public Health (LBDPH); Terminal Testing Laboratorics, Inc. (TTL); or California Department of Mater Resources (DWR); os indicated

32505-0-8 6-61 200 370

ANALYSES OF SURFACE WATER NORTH COASTAL REGION (NO. 1)

OUTLET CREEK NEAR LONGVALE (STA. 5b)

(P	WATER
Continue	SURFACE
D-2	Ы
TABLE	ANALYSES

NORTH COASTAL REGION (NO. 1)

REDWOOD CREEK AT ORICK (STA. 3b)

	Anolyzed by 1	USGS											
	Hordness bid - Coliform Anolyzed es CoCO3 IIY MPN/mi by I Totol W DM	Median 23.	Maximum 230.	Minimum 2.3									
1	- piq -	4	130	20	Ч	20	25	2	80	CI	¢1	CJ	Q
	aco ₃ N C	5	\$	-+	4	9	4	9	m	9	7	80	on
		56	28	34	30	32	33	38	17	52	61	63	89
	cent eod - ium	19	19	17	77	19	50	17	12	2	12	15	15
Totel	solved solids in ppm								63 ¹				37 £
	Other constituents ^d								ABS 0.0 As 0.00 Pol1 0.00				Pol, 0.00 As 0.00
	Silico (SiOg)								6.5				0*1
lion	Boron (B)	0.0	0.1	0.0	1.0	0.0	0.1	0.0	0.0	0.0	0.0	1.0	0.0
miltion per million	Fluo- ride (F)								0.2				
ports per million equivolents per mill	Ni- Irots (NO ₃)								<u>10.0</u>				<u></u>
e quive	Chio- rids (CI)	7.2 0.20	3.6	<u>2.5</u> 0.07	0.11 0.11	4 . B 0.14	2.0 0.06	<u>5.5</u> 0.16	<u>1.0</u>	<u>2.5</u>	11.0 0.11	<u>3.5</u> 0.10	5.44 0.15
=	Sul - fote (SO ₄)								7.0				0.17
astituent	Bicor - bonote (HCO ₃)	62 1.02	28	<u>37</u> 0.61	32 0•52	32 0.52	<u>35</u> 0.57	<u>39</u> 0.64	46 0.75	<u>-56</u>	<u>61</u>	67 1.10	<u>1.07</u>
Minsroi constituents in	Corbon- ote (CO3)	0000	0.00	0.00	0000	0.00	0.00	0.00	0.00	0*00	0*00	0.00	00*0
Mir	Potos- sium (K)								0.02				0.02
	Sodium (No)	5 .1 0.22	<u>3.0</u> 0.13	3.2	2.4 0.10	<u>3.4</u>	0.17	3.6 0.16	3.5	1.8 0.08	4.9 0.21	5.1. 0.22	5.2 0.23
	Mogns- muns (pM)								<u>0.9</u>				<u>1.17</u>
	Colcium (Co)	1.12°	<u>0*50</u> c	0.68°	0.600	<u>0*94</u> c	<u>.99*0</u>	0.770	<u>15</u> 0•75	<u>1.01</u> 0	1.22°C	<u>1.26</u> °	22 1.10
L	alb F	- <u>1</u> - - 1-	1.2	7.7	2 5	7.2	0.0	7.2	0.8	1 20	7.2	2.0	6 <u>.9</u>
Construction of the	conductance (micromhos at 25°C)	136	ħL	87	$_{li}$	79	8	6	100	122	133	146	145
	ve d jen %Sof	62	46	67	66	66	66	66	76	93	16	91	85
	Dissolve d osygen ppm %Sof	6.7	10.1	11.3	12.2	12.0	†*TI	10.9	10.3	9.6	9•3	0*6	8.7
	Temp in of	60	24	48	717	54	94	25	22	58	64	61	29
	Dischorge Temp in cfs in OF	53	2330	939	1590	855	1020	482	356	1.84	130	62	52
	Dote ond time P.S.T.	10/3/6 3 0810	0260 tl/11	01/21 01/71	1/15/64	2/12 0900	3/11 0850	4/15 0810	5/13 0800	6/4 0730	7/15 1105	8/12 0840	9/16 0825

Field pH.

b Loborotory pH.

c Sum of colcium ond magnesium in epm.

d Heavy metals reported in table of "Spectragraphic Analyses of Surface Water".

Derived from conductivity vs TDS curves

Determined by oddition of analyzed constituents.

g Gravimatric determination.

32505-D-R 6-61 200 SPO h Annuel median and mane, respectively. Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Loboratories, or United Stares Public Health, Service. Maneal analyses made by United Stares Geological Survey, Quelity of Wares Bonch (USGS) United Stares Department of the Internet, Durano Reclamation (USBR); United Stares Public Health, Service (USHS); San Bernardino Compy Flood Comb Dativi (CBDPH); Fammal Testing of Manea Bonch (USCS); United Stares Department of the United Stares Public Health, Service (USHS); San Bernardino Compy Flood Comb Dativi (CBDPH); Fammal Testing the Stares Colleging of Manea Resources (DMR); San Alexander Service (USHS); San Bernardino Compy Flood Public Health, HLEDPH); Fammal Testing the Adverting of Manea Comparis, Disconder (ADMP); City of Loong Beach, Department of Public Health, Europhy: Anamal Testing the Adverting Stares Department of Manea (DMP); San Alexander Stares Department of Manea Stares and Stares Department of Manea Stares Department of Manea Adverting Stares Department of Public Health (LADPH); City of Loong Beach, Department of Public Health, Carto Stares Conditions, Department of Manea Resources (DMR); San Adverting Stares Department of Public Health (LADPH); City of Loong Beach, Department of Stares and Stares Department of Manea Stares Stares (DMP); San Adverting Stares Department of Public Health (LADPH); City of Loong Beach, Department of Manea Stares and Stares Stares and Stares Stares Stares and Stares and Stares (DMP); San Adverting Stares Stares Stares and Stares Stares and Stares Stares Stares and Stares Stares Stares Stares and Stares Stares Stares Stares and Stares Stares Stares Stares Stares Stares Stares and Stares Stares

TABLE D-2 (Continued)

Ľ	
MAI	1)
Ŀ,	.ov)
SURFACE	REGION
5	COASTAL
ALYSES	NORTH
ANAL	

r

SALMON RIVER AT SOMESBAR (STA. 28)

2

	Annual	by 3		USGS											
	Collector	ity MPN/mi by i In ppm		Median 2.3	Maximum 13.	Minimum 0.23									
	Tur-	- 11 1 y		~	m	Ч	0	ŝ	10	-1	н	-1			Ч
		co,	U E N A	0	ŝ	-	m	-1	0	CV	CJ.	0			0
			Te fol	65	38	745	52	53	50	40	31	26			61
	Per-	- poe		10	00	6	9	6	10	1	4	13			2
	-010-	solved	Edd u								1 64				80 M
		Other constituents d									10.0 ABS 0.0 AB 0.00				RD <u>0.00</u> AB <u>0.00</u>
		Silico	18 nich								10.0				12
		Beren	ē	0*0	1.0	1.0	1.0	0.0	1.0	0.0	0*0	0*0			0
millio		Fluo-	E)								0.01				
	E UBIOAID B	Ni-	(NO3)								4.2 0.07				<u>0*0</u>
		Chie-	(CI)	2.0 0.0	0.0 <u>3</u>	0.5	<u>1.5</u>	<u>1.2</u> 0.03	<u>1.0</u> 0.03	2.6 U.07	<u>1.0</u> 0.03	0.5 0.01			6.0 0.0 0
<u>ء</u>		Sul -									2.0 0.04				0.10
nstituent		Bicor-	(HCO3)	<u>79</u> 1.29	4 <u>3</u> 0.70	50 0.82	60 0.98	64 1.05	62 1.02	46 0.75	35.0.57	<u>32</u> 0+52			1.25
Minerol constituents		Carbon-	(co ₃)	0.00	0.00	0.00	0000	0.00	0.00	0.00	0.00	0*00			0.00
Mir		Potes-	ŝ								0.5				0.02
		Sodium		3.4 0.15	1.6 0.07	1.8 0.08	<u>1.7</u>	2.4 0.10	<u>2.5</u> 0.11	2.2	1.8 0.03	1.8 0.08			3.8 0.17
		Mogne-	(BW)								<u>1.7</u> 0.14				<u>3.93</u> 0.07
L		Colcium		1.30 ^c	0.76°	0.84°	1.0 ⁴⁰	1.00	<u>1.00</u> °	0.81°	9.6 0.48	0.52 ^c			0.95
	-		al.o	8.2 7.8	7.5 7	7.8	7-3 8-2	7.4 8.2	7.5	0-8 7-1	8.0	7.9			00 00 00
	Specific	(micromhos		Jμ2	82	93	106	217	108	8	68	57			137
			%Sol	111	100	IOI	106	106	104	106	TTT	102			105
	Disselved	oxygen	ppm %Sof	10.3	2* TT	2* 2[13.1	13.0	12.4	9.11	п.3	10.6			10.0
	(emp	u oF		65	61	44	75 T	43	th 5	61	22	55	led	oled	63
	Dischorge	in cts in of		185	1650	1230	1640	2780	1460	2170	2380	2310	Not Sampled	Not Sampled	545
		and time sompled	P.S.T.	10/1/63 1245	1320 1320	12/9 1550	1/16/64 1245	2/10 1310	3/9 1230	4/13 1350	5/11 1315	6/2 1310	/2	8/	9/14

o Field pH.

b Laboratory pH.

c Sum of colcium and magnesium in epm.

d Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annuel media and range, respectively. Calculated from analyses of duplicate monthly samples made by Colifornio Department of Public Health, Division of Laboratories, or United States Public Health Service

047 002 19-9 H-0-5057E Mineal analyses made by United Stores Geological Survey, Quolity of Water Branch (USGS), United Stores Deportment of the Interior, Surveu of Reclamotion (USBR); United Stores Public Media, Stores Council Stores Public Media, Service (USPHS); Son Bennerdino County Flood Control District (SBGFED); Metropolitan Weiter District of Southern Colifornie (MMD); Les Angeles Deportment of Public Media, Metropolitan Weiter District of Southern Colifornie (MMD); Les Angeles Deportment of Public Media); Sone Bennerdino County Flood Public Medih (LBDPH); Terminal Testing Leboratories, Inc. (TTL); or Californio Deportment of Water Resources (DWR); as indicated.

Г		70												1
		Anolyzed by 1	USGS											
		bid - Coliform ity MPN/mi	Median 6.2	Maximum 230.	Minimum 0.62									
	Tur-	- pom	CI	5	<i>س</i>	0	10	-	m	г	m	ч	0	н
		N CON	0	0	0	77	4	н	7	01	0	-	5	4
			147	130	78	78	93	76	95	6	72	124	177T	134
	Dar	sod -	t	9	-	9	8	~~~~~	7	¢	8	6	~	0
	Totel	solved solved in ppm								1261				1542
		Other constituents ^d								ABS 0.0 As 0.00 P04 0.00				Pol 0.0 As 0.00
		Silica (SiOg)								2				51
	lion	5	0.0	1.0	0*0	0.0	1.0	0.1	ି	<u>ः</u>	0.0	0.0	0.0	0.2
milion	per million	Fluo- ride (F)								0.01				
oorte oer million										2 5 0 04				
	equivalents	Chio- ride (CI)	<u>3.5</u> 0.10	3.8 0.11	<u>1.0</u>	2.5	<u>1.5</u>	4.5 0.13	<u>3.2</u> 0.09	5.0	<u>1.0</u> 0.03	2.5	$\frac{3.4}{0.10}$	0.14 0.14
	Ē	Sul - fots (SO4)								4.1) 0.08				0.08 0.08
	stituents	Bicor- bonote (HCO ₃)	181 2.97	150 2.46	<u>95</u> 1.56	86 1.41	1.72	111	1.72	1.77	84 1.38	134 2.20	151 2.47	715 <u>1</u>
	Minsrol constituents	Corbon- 01s (CO ₃)	0.00	50	00.00	20.07	20.07	3 0.10	3.0.10	0.00	20.07	8 0.27	<u>9</u> 0.30	0.13 0.13
	Mine	Potas- C sium (K)								0.02 0.02				0.02
		Sodium (No)	4.8 0.21	3.8 0.17	<u>ه، 2</u>	2.2	3.6	4.2 0.18	<u>3.5</u> .15	3.8 0.17	<u>3.0</u> 0.13	4.5 0.20	5 <u>*1</u> 0.22	0.23
		Mogns- mum (Mg)								11. 0.87				13 1.08
		Colcium (Co)	5 <u>*94</u> 0	2.61°	<u>1.50</u> 0	1.56°	1.86	1.94c	<u>1.90</u> c	<u>19</u> 0.95	1 tte	2.48c	2.88°	1.60
			8.1 8.2	8.0 8.5	7.3 8.2	7 4 8 4	7.3	8.0	8.4 8.4	7 - 7 8 - 0	7.5 8.3	8.6	8.0	80 80 80
	Scerific	of 25°C) B	288	259	159	153	186	195	184	188	150	245	279	273
		gen (i	130	104	98	96	106	113	138	105	102	151	121	135
		Dissolved osygan ppm %Sof	л.3	10.5	1.11	5•TT	11.8	7.11	13.1	10.5	9•5	7.11	9•5	12.3
ſ			79	25	43	40	44	50	57	23	58	75	72	
		Drachorge Temp in cfs in oF	128	120	810	7777	890	630	537	^{4,} 78	885	185	52	₽ 7
		Dots ond time sompled P.S.T.	10/8/63 1500	1600 1600	12/3 1545	1/6/64 1545	2/3 1620	3 /4 1530	4/7 1515	5/5 1530	6/9 1500	7/6 1440	8/\4 1500	9/1 1450

-78-

ANALYSES OF SURFACE WATER SCOTT RIVER NEAR FORT JONES (STA. 1b) NORTH COASTAL REGION (No. 1) TABLE D-2 (Continued)

b Loborotory pH.

a Field pH.

Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Datemined by addition of analyzed constituents.

Gravimetric determination.

Annul media and more appendixed on analyses of duplicate monthy samples made by California Department of Public Health, Division of Laboratories, ar United Stores Public Health, Service. Annual median analyses made by United Stores Geological Survey, Quality of Water Benordin Scheres Department of the Interior, Survey of Reclamation (USBR); United Stores Public Health, Service (USPHS); Son Benordin County Flood Mineed analyses made by United Stores Geological Survey, Quality of Water Benordin County Flood Annual District (ISBCFCD); Metropolitan Water District of Southern, California (UMD); Les Angeles Department of Mater and Power (LADMP); City of Los Angeles, Department of Provide Health, Service (USPHS); City of Long Beach, Department of County Strict (ISBCFCD); Metropolitan Water District of Southern, California (UMD); Les Angeles Department of Mater and Power (LADMP); City of Los Angeles, Department of Provide Health, Service (USPHS); City of Long Beach, Department of Annual District (ISBCFCD); Metropolitan Water District of Southern, California (LADP); City of Los Angeles, Department of Provide California (LADP); City of Long Beach, Department of Annual A

32505-0-H 6-61 200 3PO

TABLE D-2 (Continued

r	19	_												
	Anolyzed by 1		USGS											
	bid - Coliform		Medi a n 62.	Max1mum 2400.	Minimum 2.1									
	- piq - 0		4	5	m	5	10	2	CJ CJ	77	6	0	-7	t
	Hordnese os CoCO ₃	U E Z E	0	0	0	0	0	0	0	0	0	0	0	0
	Hord 00 Co	PPM PPM	219	188	193	192	511	191	208	260	215	2 79	288	307
	tu o		31	28	29	30	28	27	28	58	33	29	30	6
Totel	solids	mqq ni								393 £				4.78 f
	Other scentificants d									ABS 0.0 A8 0.01 P04 0.50				Pout <u>0.00</u> As <u>0.00</u>
	Silico	(SiOg)								71				2
lion	5	8)	0.6	0.6	0.6	0*6	0.6	0.4	0.5	<u>0.5</u>	1.1	<u>L*0</u>	0.8	0.6
million ber mil	Fluor									0.02				
ports per million volents per mil	- 11	(NO3)								1.4			-	0.02
ports per million equivolents per million	Chio-	-	27 0.76	23 0. U5	20 0.56	24 0.68	20 0.56	<u>18</u> 0.51	21 0.59	27	10 0.54	31. 0.87	34	38 1.07
<u> </u>		(so.)								10				0.33
	Bicor-		<u>300</u> 4.92	256 4.20	260 1.26	260 4.26	278 4.50	265 4.34	282 4 • 02	356	304 4.98	31.	364 5+97	
Minarol constituents	1	(co ₃)	177	<u>16</u>	15	0.50	<u>14</u> 0.47	0.30	8 0.27	<u>12</u> 0.40	<u>15</u> 0.50	ch 0.80	35	0+50
Minard	Potos- Co		- 10	-10	ы	-10	10	010	010	<u>3.7</u> 0.09	-10	010		0.11 0.11
	Sodium Po	6	let.			10		H	10		15	12	H	
	-eu	Z EG	44 1-91	34 1.48	37 1+01	38	<u>37</u> 1.61	<u>33</u> 1.44	<u>38</u> 1.65	14.6	148	2.20	56 2.44	4 50
	DOM E	(BW)		0	0	0			U	141 3.140	<u>.</u>	8.	٤.	3.84
	Colcium		4.38	<u>3.77</u> 0	<u>3.86</u> °	<u>3.84</u> °	14 .22°C	3.820	4.10c	36 1.80	1+.30c	5 - 58°	5.700	5-30
	H	a1.0	8.0 0.3	8.4 8.8	8.4 3.8	8.2	8.7	8.4 8.6	8.4	8.4	7"-8 97	8.4	8.9 8.9	8.4 8.5
Specific	conductance pH (micromhos pH	67 10	556	4,92	464	515	513	480	500	643	571	680	703	758
	b ned	%sat	103	100	105	66	102	105	100	100	1.00	66	121	56
	Dissolved osygen	ppm %Sof	9•5	10.7	12.2	S•П	1.21	1.11	10.4	10.9	çı., 6	6+1	9.9	e
			60	49	⁴ 3	¹⁴³	τ'n	20	5	Lt1	-82	7.0	11	20
	Dischorge Temp in cfs in oF		346	225	210	540	292	252	132	145	346	30	12	U 4-
	Dote ond time somoled	P.S.T.	10/9/63 1210	11/6 0845	12/4 1405	1/7/64 0850	2/4 09 00	3/5 1400	4/8 0725	5,/6 0/30	6/10 0740	1.1 0730	875 1300	0740

b Loboratory pH. o Field pH.

Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves. e

Determined by addition of analyzed constituents.

g Grovimetric determinotion.

32505-0-8 6-61 200 h Anual media and range, respectively. Calculated from and/yses of duplicate manihy samples made by California Department of Public Health, Division al Laboratories, or United Stores Public Health, Service. 1 Mineral analyses made by United Stores Geological Survey. Quality of Water Bond, Marke Stores Public Kapelin, Service. Control Distarts State California Department of the Internet Stores Department of the Internet. Survey of Reademotion (USBR), United Stores Public Health, Service. Control Distarts State California Collinano (AMD). Los Angeles Department of the Internet. Survey of Reademotion (USBR), United Stores Public Health, Service. Public Health, LueDPH): Elemon Testing debarotes, Internet Stores Department of Water and Power (LADMP), City of Los Angeles. Department of Public Health, Schrod Lung Basch, Department of Public Health, LBDPH): Elemon Testing debarotes, Internet Stores Department of Water and Power (LADMP), City of Los Angeles. Department of Health Service (USDPH): City of Long Basch, Department of Public Health, LBDPH): Elemon Testing debarotes, Internet Stores Department of Water and Power (LADMP); City of Los Angeles. Department of Public Health, EuropHeil, Schon of Land Public Health, LBDPH): Elemon Testing debarotes, Internet Stores (DMR); os indicated.

8

ANALYSES UP SURFACE WALEN NORTH COASTAL REGION (NO. 1)

SHASTA RIVER NEAR YREKA (STA. LA)

		Hordnese bid - Coliforn	u / N d W		Median 2.3	Maximu 23.	Minimu 0.20									
		Tur-	n ppm		-	96	-	0	4	0	Ч	Ч	-	н	m	-
		1000	P C N		m	m	m	ω	cu	н	m	4	N.	m	0	*
			l.		69	37	Lη	77	τħ	τ _†	777	5 [†]	94	60	1 9	99
		Per-	-		►	00	~	9	6	1	6	7	10	я	6	<i>с</i> ,
		Totel dra-	in ppm									54 £				78 f
			Other constituents $\tilde{\boldsymbol{d}}$									ABS 0.0 As 0.00 Pot 0.00				P0, 0.05
			Silico (SiOg)									13				112
		lion	Boron (B)		0.1	0.0	0.0	0.0	0.0	0.1	0-0	0.0	0.0	0.0	0.0	0.2
1	milio	per million	Fluo- ride (F)									0.00				
	ports per million	olents	trote (NO ₃)									<u>3.1</u> 0.05				1°0 1°0
	ă	equivolente	Chio- ride (CI)		2.8 0.08	1.8 0.05	0.5	3•0 0•08	0.00	0.0	4.11 0.11	<u>1.0</u>	1.0	<u>1.5</u>	<u>1.0</u> .03	<u>2.7</u> 0.05
	Ē		Sul - fote (SO ₄)									3.0				<u>् २</u>
	constituents		Bicar- bonate (HCO _S)		81 1.33	42 0.69	$\frac{5^4}{0.89}$	50 5.82	48 0.75	4.0 0.80	4.9 0.80	50 0.82	54 0.85	1.15	7 ^{1,} 1.21	<u>76</u> 1.25
	Minerol Con		Corbon – ofe (CO _S)		0.00	0*00	0.00	0000	0.00	0.00	0.00	0.00	00.0	0.00	1 <u>6.03</u>	0.00
	Min		Potos- sium (K)									<u>3</u>				a
			Sodium (No)		2.6 0.11	$\frac{1.4}{0.00}$	<u>1.7</u>	1.1	1.5	5 5 0 10	2 C 0 09	1.6 6.07	2.4	3.5	2.3 0.12	<u>3.)</u>
			Magne- muis (Mg)									<u>7+1</u>				11 0.0
			Colcium (Co)		1.38c	0.730	0 <u>.940</u>	<u>0.38</u> c	0.82 ^c	0.82 ^c	0 <u>•88</u> c	6.4 0.32	126-0	1.20 ^c	1.28°	8.1 0.42
		1	<u>م</u> ابه		8.0	7.7	7.8	7.3 5.2	8.0	7.3 8.1	7.4 8.3	<u>7-6</u> 7-8	1°2	8.0	<u>7.8</u> 8.3	1.0 0
		Specific	micromhos of 25°C)		T4T	11	76	ើ	87	88	З	88	76	122	131	135
				Γ	103	OTT	105	108	Tor	103	100	105	104	103	100	104
		Dissolved	mqq		10.0	12.0	1.21	13+1	13.1	12.5	12.0	11.5	10.8	с ^{, +} ,	4.	10.1
		Temp	ы. 		62 (5	53	54	5#	77	τ5	20	53	57	19	c.	63
		Dischorge Temp	in cfa		212	17500	3580	081t	3030	4260	2300	1810	1010	516	304	505
			sompled P.S.T.		10/3/63 1115	41/11 1220	12/10 1020	1/15/64 1315	2/12 1245	3/11 0111	4/15 1210	5/13 1045	6/4 1040	7/15 1430	3/11 1200	9/10 1130

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL RUGION (NO. 1)

SMITH RIVER NEAR CRESCENT CITY (STA. 3a)

Anolyzed by 1

-E E

USGS

BII

num H

a Field pH.

b Laboratory pH.

Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

f Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annuel median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratores, or United Stores Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Public Headth Service (USPRS); San Bernardino County Flood Control District (SECFCD); Metropolitan Mater District of Southern California (MMD); Las Angeles Department of Mater and Power (LADMP); City of Las Angeles, Department of Public Headth (LADPH); City of Lang Beach, Department of Public Headth (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DMR); as indicated.

TABLE DISCOLOUR

32505-D-H 6-61 200 SP0

- 80 -

	Anciyzed by i	T	USGS											
	Hardnass bid - Caliform ⁿ as CaCO _S ¹¹ MPN/ml Total N C		Mediau 2	Maxi au. 230.	Minimum ©.23									
	- hig	1	Ч	ŝ	-	30	CJ	¢1	m	-	50	Ч	C1	-
	N COS	mdd mdd	0	0	0	01	0	0	0	0	0	0	0	0
L		Edd	OII	57	58	56	58	99	70	11	87	26	93	717
	tent 1 and 1 and		14	17	17	2	19	19	18	17	17	17	1.8	15
Totel	solved solids in pom									104 f				157 f
	Other constituents d				As 0.00					ABS 0.0 AB 0.00 P0, 0.05		PO4 0.00	P01 0.110	ABS <u>0.0</u> As <u>0.00</u>
	Silica (SiO ₂)	'								ল				1.1
- Lion	Baran (B)		2	0.1	1.0	0.0	0.0	<u>0+1</u>	0.1	0.0	0.2	5	0.2	₽
millio per mi	Fiua-	E								0.2 0.01				
parts per million aquivalente per million	Ni-	(SUN)								<u>2.5</u> 0.04		0.8 0.01	<u>1.1</u>	0.01
pd	Chia-	5	9.6 0.27	5.4 0.15	<u>5.0</u>	5.0 0.14	0*1	6.1 71.0	5.9	2.5 0.07	11.0 11.0	5.5 0.16	<u>6.2</u> 0.17	1.°.0
Ē	Sul - fate	1805)								<u>7.0</u>				0.19 0.19
stituents	Bicar- bonate	(HCO _S)	<u>139</u> 2•28	70	1.16	66 1.08	<u>1.18</u>	<u>76</u> 1.25	82 <u>1.34</u>	<u>96</u> 1+57	101	1.80	114 1.87	2.23 2.28 2.28
Minarol constituents	Carban-	(cn ²)	0.00	0000	0.00	0.00	<u>1</u> 0.03	20.07	2 0.07	0.00	3 0•10	<u>6</u> 0.20	2 0.07	0,00
Mina	Potos- C	ŝ								<u>1.0</u>				0.03
	Sodium (Na)	1	8.3 0.30	<u>5.5</u>	<u>5.5</u> 0.24	<u>6.6</u>	6.4 0.28	<u>6•9</u> 0• <u>30</u>	<u>6.9</u> 0.30	7.4 0.32	8.3 0.36	9.2 0.40	<u>9.41</u>	<u> </u>
	Magne-	(BW)								6.6 0.54				0.83
	Calcium (Ca)		2,200	1.14c	1.16	1.120	1.16	1.37	1.440°	20 1,000	1.74°C	1.94°C	1 <u>.86</u> c	29 1.45
	I at	- 1	5 0 0 0 0 0	7.5 8.0	7.4 8.0	7.4 8.0	7.6 8.3	7.6	7.8 8.4	00 00 00 00	8 • 5	8.5	8.4 8.4	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Sascific	conductance (micramhos at 25°C)		544	139	141	131	142	153	159	183	164	222	219	B T IS
	solved sygen	%Sat	109	76	66	100	103	TOH	1.04	105	103	123	103	66
	Disadved	ppm %Sat	8 . 6	10.1	7.11	12.0	7+LL	1.11	10.2	7.6	9•2	10.4	9•0.	6 0
		-	69	26	917	54	49	20	61	99	02	75	72	8
	Dischorge Temp in cfs in oF		20	1390	964	1400	1130	582	528	270	168	60	7†O	а Ю
	Dote and time sompled	P.S.T.	10/2/63 1215	11/13 1250	12/11 1240	1/14/64 1240	2/11 1315	3/10 3/10	4/1/ 1315	5/12 1245	6/3 1300	7/14 1400	8/11 1310	9/15 1245

a Field pH.

b Laboratary pH.

Sum of calcium and magnesium in epm.

Heavy metals reparted in table of ''Spectragraphic Analyses of Surface Water''

Derived from conductivity is TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

Amual malara and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, ar United Stores Public Health Service Mineral analyses, mode by United Stores Geological Survey, Ousling Market Bones, Department of Market, Survey, Ousling Market, Service (USSP), United Stores Public Health, Service (USPHS), Son Bernordino Caunty Flood Caran District (EDSPH), Farmadian Market Danier, California (MAD), Los Angeles, Department of Market, Survey, Ousling Market, Service (USPHS), Son Bernordino Karanto di Sones, Department of Sones, Department of Market, Service (USPH), Curvet, Caranto Stores, Department of Sones, Department of Edditional Caranty Flood Public Health, Europhy, Farmadian Testrobuscues, Inc. (TLL), An California Department of Ware Resources (DMR), as indicated

SOUTH FORK EEL RIVER NEAR MIRANDA (STA. 7)

	_									-						
		Analyzed by 1														
	4	bid - Coliform ⁿ Analyzed Ity MPN/mi by i Dpm														
T	Tur-	hid - bid - 11y		н	m	Ч	15	۰D	CJ.	г	н	н	ч	m	н	
		Son	N E	CJ	3	n	0	cJ	н	m	n	n	4	4	5	
		Hard os Co	ppm	1	55	99	79	75	69	62	57	791	63	73	51.	
I	Per-	and - mu		21	0	⊳	2	6	я	TO	10	십	77	13	75	
	Total	solved solids	E dd u								73 f				loct	
		Other constituents d									ABS 0.0 As 0.00 P01 0.05				POL 0.00 AS 0.00	
		Silice	(Brie)								នា				21	
	lion	Boron	0	1.0	0.0	T=0	0.1	1.0	0.2	0*0	0.0	0*0	0.0	1.0	0.0	
	Der mil	Fluo-									0.2 0.01					
	equivatents per million	Ni- trote									2 <u>.8</u> 0.05				0°*0	
	aquiva	Chio-	(c)	<u>ر میں</u>	2.8 0.08	2.5 0.07	0.11	<u>3•5</u> 0•10	2.0 0.06	4.5 0.13	<u>1.5</u> 0.04	<u>1.5</u> 0.04	<u>3.5</u> 0.10	3.5	<u>7.5</u> 0.21	
	,Ę	Sul - fats	(so ₄)								<u>4.0</u> 0.08				0.10	
	tituents	Bicar- bonate	(HC03)	84 <u>1+38</u>	64 1.05	1.26	80 1.31	<u>85</u> 1•39	81 1.33	1.15	66 1.08	5 <u>3</u> 0.87	72 1.18	84 1.38	8 <u>3</u> 1•36	
	Mineral constituents	Carbon-	(CO3)	0000	0.00	0.00	2 0.07	2 0•07	2 0+07	<u>1</u> 0.03	0*00	0*00	0000	0*00	<u>1</u> 0+03	
	Mine	Potas- C	(K)								0 <u>•3</u>				0.6	
		Sodium		4 <u>, •3</u> 0•19	2.4	2.4	2.7	3.4 0.15	3.8 0.17	3.2	2.9 0.13	2.8	4.1 0.18	5.0 0.22	4.8 0.21	
		Magne-	(Mg)								4.7 0.39				<u>6.1</u> 0.50	
		Calcium	(0)	<u>1.42</u> c	<u>1,09</u> €	<u>1.32</u> c	<u>1.56</u> °	<u>1.50</u> c	1.38°	1 <u>*24</u> c	15 0.75	0.920	1.26°	2 <u>94°</u> I	1.00	
		H	al.=	8 <u>•</u> 1	8.0	7.6 8.0	8:4	7.4 8.3	8.5	77 8.3	7.8 8.1	1°-1	7.9 1.8	8 8 2 2 2	8.0	
	Spacific	(micramhos at 25° C)	5	159	611	138	153	154	150	130	121	101	139	163	166	
			%Sot	TOL	TOT	86	TOH	105	101	105	101	103	104	96	96	
		Dissolvsd osygen	E dd	6.6	0.II	11.7	12.6	12 • 5	9°TT	••ग	10.1	10.1	8.6	8.4	6•8	
		Tamp in oF		63	Ľ.	44	¹⁴³	1474	54	54	58	59	75	72	1 9	
		Dischorge Tamp in cfs in of		295	1360	1530	0911	2260	0421	1340	1090	496	0Tt	231	215	
		Date and time sampled	P.S.T.	10/4/63 0915	11/12 1000	12/9 1200	1/16/64 1600	2/10 2/10	3/9 0940	4/13 1010	5/11 0910	6/2 0915	7/13 1020	8/13 1040	01460 17	

ANALYSES OF SURFACE WATER TABLE D-2 (Continued)

NORTH COASTAL REGION (NO. 1)

TRINITY RIVER NEAR BURNT RANCH (STA. 4b)

o Field pH.

b Laboratory pH.

c Sum af calcium and magnesium in epm.

Heavy metals reported in table of ''Spectrographic Analyses of Surface Water''

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves.

Gravimstric determination.

Annual madian and range, respectively. Calculated fram analyses and duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service. Minerel analyses made by United States Geological Survey, Oucling (MSS), United States Department of Minicus, Survey and Stores Public Health, Service (USPHS), 5on Bernardina County Fload correst Distribution States Geological Survey, Oucling (MSS), United States Department of Moner and Power (LADMP), Criy of Las Angeles Department of Moner and Power (LADMP), Criy of Las Angeles, Department of Robit Fload Correst Desarch States Tester States Department of Noner and Power (LADMP), Criy of Las Angeles, Department of Public Health, Service (USPHS), Son Bernardina County Fload Correst and REMAT Tester Material States Department of Noner and Power (LADMP), Criy of Las Angeles, Department of Public Health, Service (USPHS), Son Bernardina County Fload Correst and REMAT Tester Material States Department of Noner and Power (LADMP), Criy of Las Angeles, Department of Resch, Department of Resch, Department of Resch and Resch (LADM), Criy of Las Angeles, Department of Resch and Resch (LADM), Criy of Las Angeles, Department of Noner and Resch (LADMP), Criy of Las Angeles, Department of Resch and Resch and Resch and Resch and Resch (LADM), Criy of Las Angeles, Department of Resch and Resch and Resch (LADM), Criy of Las Angeles, Department of Resch and Resch and Resch (LADM), Criy of Las Angeles, Department of Resch and R

32505-D-H 6-61 200 SPO

-82-

	Anolyzed by I	USCS												
	hid - Coliform ity MPN/mi	Median	1.8	Mauximum 23.	Minimum 0.21									
	- pid-	н		6	œ	Ч	10	CI	-	Ч	-	~1	01	н
	N C OS	ed o		n	ŝ	m	0	Ч	m	4	m	2	1	00
		795		29	75	917	472	74	02	67	62	82	91	8
	Tent For Ling	10		60	2	10	80	σ.	6	10	11	10	5	3
	anitas anitas apida									88 ^f				115 ^f
	Other constituents ^d									ABS 0+0 As 0+00 P04 0+05		P014 0.000	Po ₁ , <u>0.05</u>	P0, 0.00 As 0.00
	Silica (SiO ₂)									57				<u>ମ</u>
	1 5	0.1		0*1	0*0	0.0	<u>1•0</u>	7.0	0.0	1.0	0.0	0.0	1.0	0.0
million	Fluo- ride									0.01				
										2.0 0.03		1.0 0.02	3.3	0°•0 0•0
ports pi	Chio- ride (CI)	5.2	0.15	2.6	2.5	3.5	<u>1.0</u>	<u>1.0</u>	1.4 0.12	0.06	0.00	3.0 0.08	3.0	5 0 0 1 1 0 0 1 1 0
Ē	Sul - fote (SO _a)									<u>(.0</u> 0.12				8.0 0.117
1.fuents	Bicar- bonate (HCO ₃)	011	1.80	1.28	88 1.44	53 0.87	88 1.144	87 1.43	78 1.28	<u>15</u> 1.23	<u>72</u> 1.18	<u>92</u> 1.51	98 1.01	<u>1.64</u>
Mineral constituents	C arbon - E ate (CO ₃)		00.	0.00	0.00	0.00	0.00	<u>1</u> 0.03	20.07	<u>1</u> 0.03	0.00	0.00	20.07	0.07
Miner	Patas- Sium (K)				010	010	0.0	HIO		0.01	010	010		
	Sodium P	5-7	50	0.11 0.11	2.6 0.11	2.2	<u>3.1</u> 0.13	<u>3.3</u> 0.14	<u>3.3</u> 0.14	<u>3.44</u> 0	5.7	4.3 0.19	0.21	010 0153 0155 0155 0155 0155 0155 0155 0155 0155 0155 0155 0155 0
	-sugna- sum (Mg)		0	010	CU O	010	mio	mlo	mlo	0.54 0		-10	-10	0.00 0.00 0.00
	Calcium M		1.90	1.35°	1.50°	.26.0	1.48°	1.48°	1.40	<u>10</u>	1.24°	1.04C	1.82°	
	I al-	8 5	_	8.0	8.0	7.5	1-1	9.4 8	17 B	8.0	2 S	8 5 8 9	2 F	33"
	Specific conductance (micramhas at 25°C)	200		144T	151	158	153	245	144	140	131	1./1	191	66
	yed %Sat	108		100	66	103	105	102	lol	103	104	105	104	103
	Dissolvad asygan ppm %Sc	5.6		10.8	12.0	12.7	12.0	6*11	1.11	10.5	é.• 6	5 * 2	6°.0	ç.
	d L L	68		3	47	5t	45	14	2	58	5	<i>(</i> /8	74	67
	Dischorge Tamp in cfs in OF	02.4		0457	05رز	0454	76.00	3090	3480	2480	1920	60#	00:	<u>م</u>
	Date and time sampled P.S.T.	<i>ċ</i> υ/ε/οτ	1,710	11/12 1525	12/9 1250	1/1/1044 0111	2/10 1600		4/13 1100	5/11 1010	_/;. 1530	7//LJ 1:25	8/10 1540	9/1 1-255

ANALTSES UP SUMPACE WAIEM NORTH COASTAL REGION (NO. 1) TRINITY RIVER NEAR HOOFA (STA. 4)

a Field pH.

Laboratary pH. 0

Sum of colcium and magnesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Datemined by addition of analyzed constituents.

Gravimatric determination.

Annul madian and range, respectively. Calculated from analyses of duplicate monthy samples made by California Department of Public Health, Division of Laboratories, or United States, Public Manuel and Public Health, Service (USPHS), Fablic Health, Servic

32505-0-8 6-61 200 2PO

	P													
	Anolyzed by 1		NSGS											
	bid - Coliferm ^h A		Meddun 5.6	Mazzlum 62.	Minirum 0.62									
	- piq -	:	¢1	5	Ч	0	2	4	-1	Ч	Ч	ч.	24	н
	aco,	zà			01	ŝ	-0.1	οų	m	01	01	0	0	н
		Totol pom	717	111	54	$l_{i}l_{i}$	44	94	J.†	45	54	57	÷.3	4 1
	cent sod -		6	2		0	я	7	10	6	10	10	6	10
Totel	solids	е Б Б Б Б Б Б Б								59 f				59 f
	Other constituents ^d	- 1			As 0.00					ABS 0.0 As 0.00 Po, 0.00		Po, 0.00	Po, 0.00	Po, <u>0.05</u> As <u>0.00</u> Po, <u>0.05</u>
	Silico	(² 015)								ମ୍ <u>ମ</u>				계
lion	<u> </u>	9	0*0	1.0	0.0	<u>1.0</u>	0.2	0.1	0.0	0.0	0.1	0.0	0•0	T•0
million per mil	F luo-	(F)								0.2				
ports per million volents per mill	Ni-	(² 0N)								2 t		0.0 <u>1</u>	<u>1.0</u>	<u>10•0</u>
ports per million equivalents per million	Chio-	(c)	<u>1.8</u> 0.05	2.5 0.06	1.•0 0.•03	1.5 0.04	14.05 0.13	<u>1.5</u>	<u>3.2</u> 0.09	1.0 0.03	<u>1.0</u> 0.03	<u>1.5</u>	0.5	0.03
E	Sul -	(so4)								2.0				0.0
tituente	Bicar -	(HCO ₃)	52 0•85	45 0.74	52 0 . 85	50 0.82	0.84	54 0.89	54 0.89	52 0.85	53 0+87	52 0.85	52 0.85	52 0.85
Minsrel constituents	Corbon -	(co ₃)	0000	00.00	0000	0.00	00.00	00.00	0.00	0.00	0.00	0.00	0.00	0000
Mine	Potos- C	(¥								0.5				t-00
	Sodium	(0 N)	<u>1.5</u>	2.8 0.12	7T 0.07	<u>1.44</u> 0.06	2.6	2.6 0.11	2.5	2.1 0.09	2.2	2.4 0.10	2.0 0.09	10 10 10 00
		(6 W)	cu o							<u>6.3</u> 0.52				0.50 0.50
	Calcium	(Co)	0 <u>.87</u> 0	0 <u>•89</u> °	<u>06.0</u>	0.87c	0.88°	0.92°	0.94°C	7.6	<u>.06°0</u>	<u>_06°0</u>	0.86°	0•32
	H	al.o	7. ⁴	1 • 1 8 • 0	7.7 7	5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.0	5 5 2 • 5 2 • 5	8.2	7-7	7.3 8.2	7.6 8.1	<u>7.5</u>	1-19 1-19
Considio	conductance (micromhos	2	93	TOT	ま	92	45	66	8	75	%	93	93	8
	p u a	%Sof	113	100	102	103	5TT	100	103	IOI	103	102	65	16
	Dissolved oxygen	Edd	12.0	1.11	9 . 11	6•TI	12.8	¶	9 . LI	10.9	ю•п	10.6	10.1	10.0
	Tamp in oF		50	$L_{\uparrow\uparrow}$	54	7777	57	54	94	67	20	52	50	4 ⁻
	Dischorge Tamp in cfs in oF		242	258	270	270	5 7 3	270	224	152	159	152	155	191
	Date ond time somolad	P.S.T.	10/1/63 0820	21/12 0830	12/9 1045	1/13/64 0900	2/10 09 05	3/9 0810	14/13 0835	55/11 0735	6/2 0730	7/13 0850	8/10 0800	9/17/0 0150

TABLE D-2 (Continued)

ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

TRINITY RIVER AT LEWISTON (STA. 4a)

e Field pH.

b Laboratory pH.

Sum of calcium and magnesium in epm. U

Heavy metals reparted in table of "Spectragraphic Analyses of Surface Water"

Derived fram conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Annucl median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Divusion of Laboratories, or United Stores Public Health Service.

Among menu many reservances of the second second (USCS), United Stores Department of the Interior, Succe of Reclamation (USR); United Stores Department of Note Stores Departm

32505-D-H 6-61 200 SPO

-84-

	2													
	Analyzed by 1		nscs											
	bid - Coliform ^h ity MPN/mi		Med ian 2.3	Maximum 620.	Minimum 0.06									
			01	20	15	25	10	6	ŝ	ŝ	01	Ч	0	4
Γ	Hordness b es CoCO ₅	N	-7	ŝ	9	m	CJ	77	5	9	m	00	5	σ
L	Hord es Co	Total ppm	109	99	63	59	26	22	67	73	82	101	1.08	Ĩ
	Cent Cent		2	10	1	10	13	15	7	Ħ	п	R	Ц	2
	solved solved									91 f				137 f
	Other constituents d									ABS 0.0 As 0.00 P01 0.05				Po. As 0.00
	Stice	(³ OIS)								2		-		
	1 5	9	0.1	0•1	1.0	0.1	0.0	0•1	0*0	0*0	1.0	0-1	0.2	2.0
r million	Fluo-	(F)								0.2				
ports par million		(NO 3)								<u>3.3</u>				0.01
	Chio-	(CI)	4.2 0.12	2.4	<u>1.0</u> 0.03	<u>1.8</u> 0.05	<u>1.8</u> 0.05	2.0 0.06	<u>5.0</u>	<u>1.5</u>	<u>1.0</u>	2.5	2.0	0.1
Ē	Sul -	(so.)								9.0 0.19				0.10
stituents	Bicar-	(HCO _S)	120	<u>71,</u> 1.21	51.1	64 1.05	66 1.03	63 1.03	<u>76</u>	82 1.34	<u>90</u> 1.18	1.87 1.87	<u>1.93</u>	5 • 10
Minerol constituents		(c03)	4 0.13	0.00	00.00	<u>20.07</u>	0.00	<u>1</u> 0.03	0.00	0.00	3.0.10	0.00	14 0•13	0000
Mine	Potos-	(¥)								<u>20.0</u>				
	Sadium	(0N)	6.8 0.30	3-3 0-14	3.0 0.10	2.9 0.13	3.9 0.17	4.6 0.20	3.9	1, 9 0, 21	4.9 0.21	0.27	0 <u>.30</u>	
	Mogna-	(Mg)								1, . 4 0.36				U-10
	Colcium	(0)	2.180	<u>1.31</u> c	<u>1.26</u> c	<u>1.18</u> 0	1.12	1.14	1.34c	1.10	1 <u>-61</u> -	2. <u>03</u> 0	2.100	37 1.85
	I	10	8.2 8.3	<u>C.T.</u>	7.14 8.0	2 - 3 5 - 3 5 - 3	3 <u>-3</u>	3	7 <u>.8</u> 8.2	8.2	8. 	<u>8.5</u>	4 8 8	11-12-00 11-12-00 12-00
	Specific conductance (micromhos		Th2	145	139	129	122	129	Th2	158	178	012	230	52
	p ci	%Sot	611	66	100	103	103	1.02	101	1.02	1.00	66	5113	्रत
	Dissolvad osygan	ppm %Sof	10.9	10 . 0	12.3	7.31	12+3	6-1	6•6	(6. 1	lu.t	ц•
	Temp in oF		67	49	⁴ 3	¹ 3	57	Lη	61	62	0 <u>8</u>	80	10	Ę
	Discharge Temp in cfs in oF		ц	572	OT+	730	120	500	296	204	50	31	<u>5</u> •	10
	Dots and tims somoled	P.S.T.	10/2/63 1450	11/13 1530	12/11 1535	1/14/114 1515	2/11 1535	3/10 1500	4/14 1550	5/12 5/12	⊳/3 153∪	0470 0470	√11 ∪53∪	9/15 1520

VAN DUZEN RIVER NEAR BRIDGEVILLE (STA. 5a) ANALYSES OF SURFACE WALEN NORTH COASTAL HEGION (NO. 1)

o Field pH

b Laborotory pH.

Sum of colcium ond mognesium in epm.

Heavy metals reported in table of "Spectrographic Analyses of Surface Water"

Derived from conductivity vs TDS curves.

Determined by addition of onolyzed constituents.

a Gravimetric datermination.

h Annul media ond range, respectively. Calculored fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service

ONE 002 19-9 IH-0-5022E Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Intention, Bureau of Realamatica (USBR), United States Department (USPR), 5 on Benardino County Flood Control District (SSCFCD), Metropoliton Mater District of Southen Colliform (MWD), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Public MadMi, LADPH); City of Los Angeles Department of Dublic Health (LBDPH); Temmal Testing Laboratores, Inc. (TTL); or Caliform Oppartment of Water and Power (LADMP), City of Los Angeles, Department of Public MadMi, LADPH); City of Los Angeles, Department of Dublic Health (LBDPH); Temmal Testing Laboratores, Inc. (TTL); or Caliform Oppartment of Water and Power (LADMP), City of Los Angeles, Department of Water and Variation (California). TABLE D-3 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

NORTH COASTAL REGION (NO. 1)

Plant But But </th <th></th>											
10 10<		-	(Ju)	5.0*	5.0* 13*	5.7* 13*	5.0*	5.0* 13*	5.7*	5.0* 13*	о. * 0. ч.
10 10<		Nonodium	(^)	0.25**	0.25 ** 1.4	10	1.0 5.3	1.6	3.4 8.7	0.25	0.42 1.7
10 10<		Titonium	(L I)	0.57* 0.57*	0.50* 1.3*	5.1 1.3*	0.50* 1.3*	0.50* 1.3*	0.57* 1.3*	0.88 1.3*	* * 5.0
Res Dote 2 Annumber 2 Set 2 Dote 2 Annumber 2 Contributent in party in contributing for party (2000) Annumber 2 Annumber 2<		1	(Pb)	1.2* 1.4*	0.0 9.0 8.0	1.4* 3.3*	1.2* 3.3*	1.2* 3.3*	1.4* 3.3*	1.2* 3.3*	. ເຕ . ເຕ
No Atomic Beryl, (m) Beryl, (Nickel	(IN)	0.88 0.91	0.80	0.94 0.87	2.4 2.1	1.8 1.7	1.9 1.1	0.75 0.67	57
Bio No Dote (m) Aum. Beryl. (m) Binum (m)		Malyb-	(Mo)	0.25** 1.7	0.25** 0.67**	0.80 0.67**	0.25**	0.25**	0.54 1.8	0.25**	0.67**
Bio No Dote (m) Aum. Beryl. (m) Binum (m)	L O	Mange.	(Mn)	1.2* 1.4*	1.2* 3.3*	1.4* 3.3*	1.2* 3.3*	1.2* 3.3*	1.4+ 3.3+	1.2* 3.3*	3.3* 3.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	per bill	+-		0.25* 0.29*	0.25* 0.67*	0.29* 0.67*	0.25* 0.67*	0.25* 0.67*	0.29* 0.67*	0.25* 0.67*	605*
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	in ports		(00)	5.0% 5.7*	5.0* 13*	5.7* 13*	5.0*				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	stituents		(Fe)	1.6 2.1	3.8	1431	4.8 6.0	4.5 6.5	10 4.4	0*0 4*4	
Sto Dote No Alum: Aum Bay Vi (ium) Base Vi (ium) Base Vi (ium) Base Vi (ium) Base Vi (ium) Continue Co	Cor	Copper	(C u)	2.4 1.4*	68 3.3*	1.44* 3.3*	0°0 3°30	1.2** 3.3*	3.3*	a.e. 	3.3** **
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	(Cr)	1.4* 1.4*	1.2* 3.3*	1.4* 3.3*	1.2* 3.3*	1.2* 3.3*	1.4* 3.3*	3.3*	ດີ. ເຕັ
Sto Dote No Atternit Beryti- inum Bismuth mm No 5c 5-11 1.22* 0.50% 0.22% 6 5-12 7.3 1.3* 0.50% 0.22% 6 5-12 7.3 1.3* 0.66% 0.22% 7 3 5-13 1.3* 0.66% 0.22% 8 5-6 9.1 1.3* 0.66% 0.66% 8 5-13 1.2* 0.56% 0.66% 0.66% 8 5-6 9.1 0.73* 0.66% 0.66% 8 7.3 1.3* 0.56% 0.66% 8 5-11 1.2* 0.56% 0.66% 9 9.14 7.3 1.3* 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* <td< td=""><td></td><td>(</td><td></td><td>1.2** 1.4*</td><td>1.2** 3.3*</td><td>1.4* 3.3*</td><td>1.2* 3.3*</td><td>1.2** 3.3*</td><td>1.4+ 3.3**</td><td>1.2* 3.3*</td><td>3.3*</td></td<>		(1.2** 1.4*	1.2** 3.3*	1.4* 3.3*	1.2* 3.3*	1.2** 3.3*	1.4+ 3.3**	1.2* 3.3*	3.3*
Sto Dote No Atternit Beryti- inum Bismuth mm No 5c 5-11 1.22* 0.50% 0.22% 6 5-12 7.3 1.3* 0.50% 0.22% 6 5-12 7.3 1.3* 0.66% 0.22% 7 3 5-13 1.3* 0.66% 0.22% 8 5-6 9.1 1.3* 0.66% 0.66% 8 5-13 1.2* 0.56% 0.66% 0.66% 8 5-6 9.1 0.73* 0.66% 0.66% 8 7.3 1.3* 0.56% 0.66% 8 5-11 1.2* 0.56% 0.66% 9 9.14 7.3 1.3* 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* 0.56% 0.66% 6a 5-11 1.2* <td< td=""><td></td><td>Codmium</td><td>(P)</td><td>1.2* 1.4*</td><td>л.2* 3.3*</td><td>1.4* 3.3*</td><td>3•3*</td><td>1.2* 3.3*</td><td>1.4* 3.3*</td><td>3.3*</td><td></td></td<>		Codmium	(P)	1.2* 1.4*	л.2* 3.3*	1.4* 3.3*	3•3*	1.2* 3.3*	1.4* 3.3*	3.3*	
Ste Dote Atomic Bervillion No 0 0 0 0 No 5 5 1 3,4 0,55 9 1 3,4 0,55 1.23* 1 5 5 1.2 1.23* 5 5 1.2 1.2 0,55 8 5 1.3 1.3 0,55 8 5 1.3 1.3 0,55 8 5 1.3 1.3 0,55 8 5 1.3 1.3 0.55 8 5 1.3 0.55 0.55 8 5 1.3 0.55 0.55 9 1.4 5.0 0.55 0.55 1.3 5 0.55 1.3 0.55 8 5 1.3 0.55 0.55 9 1.3 0.55 0.55 0.55 1.3 1.3 0.55 0.55			(B:)	0.25* 0.29*	0.25* 0.67*	0.29* 0.67*	0.25* 0.67*	0.25* 0.67*	0.29*	0.25* 0.67*	0.67*
Sto Dote Aluminitian No 5: 0 1.0 No 5: 5:11 1.2** Sto 5:12 1.2** 1.4 Sto 5:12 1.2** 1.2 Sto 5:12 1.2** 1.2 Sto 5:13 1.2 1.2 Sto 5:13 1.2 1.2 Sto 5:13 1.2 1.2 Sto 5:13 1.2 1.2 Sto 5:14 7.3 1.2 Sto 5:14 7.3 1.2 Sto 5:14 7.3 1.2 Sto 5:14 6.7 5.0 6a 5:14 6.7 5.0			(Be)	0.50* 0.57*	0.50* 1.3*	0.57* 1.3*	0.50* 1.3*	0.50* 1.3*	0.57* 1.3*	0.50* 1.3*	1.3*
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1.2 ** 3.4	1.2** 7.3	146 13	1.9	1.2**	9.1	8.7	6.7 6
E E		Dote		5-11 9-1	5-12 9-15	5-6 9-2	5-13 9-16	5-11 9-14	5-6 9-2	5-11 9-14	11-2 41-9
Sionon Eal River, Maddle Fork at Dos Rico Eal River at Scotia Klamath River below Iron Gate Dum Klamath River near Klamath Klamath River near Scieald Willey Mad River near Arcata Trinity Niver near Roopa		Sto Na		5c	9	μ	m	5c	32	68	4
		Station			Eel River at Scotia		Klamsth River near Klamsth	Klamath River at Orleans	Klameth River near Seiad Valley	Mad River near Arcata	Trinity River near Hoopa

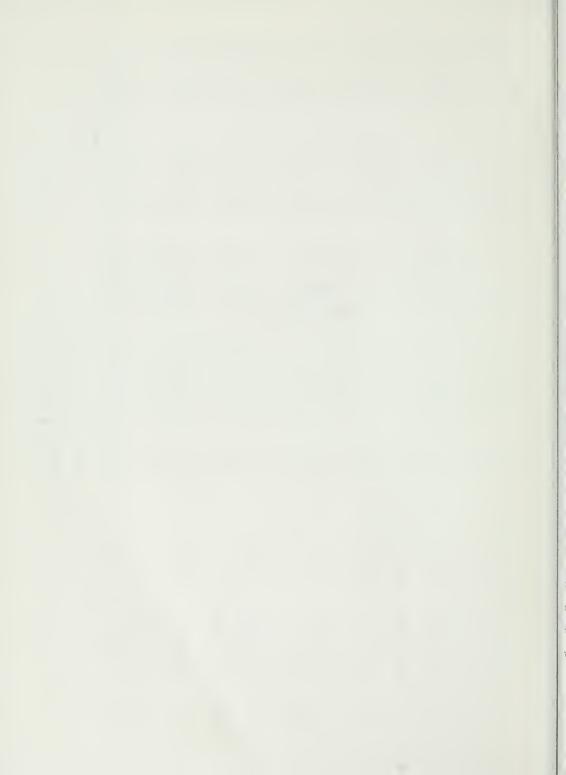
* Results are less than the amount indicated. ** Results are equal to but slightly less than the amount indicated. TABLE D-4

RADIOASSAY OF SURFACE WATERS

NORTH COASTAL REGION (NO. 1)

					Micro-micro	Micro-micro curies per liter	
No.	Stream	Near	Dete 1964	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
qL	Bear River	Capetown	5-12 9-15	-0.05 + 1.04 -0.18	-0.60 ± 0.25 0.07 ± 0.51	-1.46 + 10.14 -0.45	1.97 ± 8.87 0.90 ± 8.52
5đ	Eel River	Dos Rios	5-11 9-1	-0.28 ⁺ 0.55 -1.53 ⁺ 0.80	0.12 ± 0.62 0.21 ± 0.81	-7.68 ± 11.33 1.89 ± 11.78	-4.71 + 8.02 1.97 + 8.63
ſſ	Eel River	McCann	5-12 9-15	-0.22 ⁺ 1.34 -0.44	-0.18 + 0.60 0.22 + 0.81	8.11 ⁺ 11.87 7.80 ⁺ 10.77	-1.80 ⁺ 8.84 -1.49
5c	Eel River, Middle Fork	below Dos Rios	5-11 9-1	-0.02 + 0.99 0.45 + 1.85	12.0 + 12.0- 0.0 + 10.0	-8.12 <u>+</u> 11.60 -18.23 <u>+</u> 12.60	-1.04 ± 8.76 -6.17 ± 8.44
9	Eel River	Scotia	5-12 9-15	-0.76 + 0.38 0.38 + 0.93	-0.40 + 0.48 0.45 + 0.96	-4.10 ± 10.12 9.52 ± 10.18	5.17 <u>+</u> 10.47 -2.72
2	Eel River, South Fork	Miranda	5-12 9-15	0.06 + 1.21 0.74 - 11.0	-0.41 + 0.46 1.15 - 1.03	3.16 ± 11.38 -7.67 ± 9.57	2.41 ± 8.88 -0.70 ± 8.59
Jc	Klamath River	above Hamburg Reservoir	5-6 9-2	0.35 <u>+</u> 1.09 0.05 <u>+</u> 0.74	0.85 <u>+</u> 1.14 0.74 <u>+</u> 0.96	6.25 <u>+</u> 11.70 12.26 <u>+</u> 10.36	9.50 ± 10.59 7.28 ± 8.74
Γ	Klamath River	below Iron Gate Dam	5-6 9-2	0.54 ± 1.27 -0.05	-0.18 + 0.60 0.52 + 0.96	-6.60 ± 11.42 -1.80	6.03 <u>+</u> 9.09 -3.56
3	Klamath River	Klamath	5-13 9-16	-0.07 ± 0.75	-0.05 <u>+</u> 0.35 0.00 <u>+</u> 0.58	9.90 <u>+</u> 11.43 -1.78 <u>+</u> 1.37	-1.02 + 7.82 -1.86 + 8.55
5c	Klamath River	Orleans	5-11 9-14	-0.51 ± 0.79 -0.42 ±	0.38 + 0.90 0.26 + 0.89	7.43 ± 11.01 4.81 ± 10.26	-0.92 + 8.88 1.86 + 8.72
2b	Klamath River	Seiad Valley	9-2 9-2	-1.44 ± 1.73 -1.02	61.0-	-1.42 ± 13.39 -3.21	-4.24 <u>+</u> 8.86 19.46 <u>+</u> 10.12
6a	Mad River	Arcata	5-11 9-14	-0.14 ± 1.01 -0.32	0.63 <u>+</u> 1.02 0.07 <u>+</u> 0.63	-3.57 - 11.59 5.80	15.82 ± 12.42 -1.17

TABLE D-4 (Continued)


RADIOASSAY OF SURFACE WATERS

NORTH COASTAL REGION (NO. 1)

Sto.	Stream	Near	Date		MICro-micro	MICTO-MICTO CUTIES PER HITET	
No.		in the second se	1964	Dissolved Alpha	Solid Alpho	Dissolved Beta	Solid Beta
7a	Mattole River	Petrolia	5-12 9-15	-0.52 ± 0.83 0.64 ± 1.05	-0.58 ± 0.24 0.86 ± 1.09	2.19 <u>+</u> 10.26 -0.68	-4.87 ± 7.59 -2.77
2	Outlet Creek	Longvale	5-11 9-1	-0.26 ± 0.74 -0.67 ± 0.98	0.77 ± 1.18 0.21 ± 0.81	-3.61 ± 11.06 4.90 ± 10.20	0.88 ± 8.97 -12.05 ± 8.26
3b	Redwood Creek	Orick	5-13 9-16	-0.31 ± 0.54 0.64 ± 1.42	0.39 ± 1.00 0.35 ± 0.90	-10.96 ± 10.68 -0.59 ± 9.87	4.28 ± 8.90 -4.96 ± 7.57
2 a	Salmon River	Somesbar	5-11 9-14	-0.70 ± 0.56 1.08 ± 1.37	0.07 ± 1.30 -0.22	7.06 ± 10.71 0.82 ± 10.12	1.59 ± 10.45 0.26 ± 8.94
JD	Scott River	Fort Jones	5-5 9-1	-0.39 ± 0.68 3.25 ± 9.17	-0.28 ± 0.44 1.00 ± 1.09	-6.64 ± 11.40 20.77 ± 10.99	0.19 <u>+</u> 7.68 -3.11
Та	Shasta River	Yreka	9-2	0.88 <u>+</u> 3.19 -1.53 +	-0.26 ± 0.60 0.52 ± 0.96	10.35 ± 12.86 26.81 ± 13.20	11.61 ± 9.25 -8.79
За С	Smith River	Crescent City	5-13 9-16	-0.53 ± 0.27 0.90 ± 1.55	0.47 ± 0.98 0.08 ± 1.00	-4.57 ± 9.44 -4.87 ± 10.91	8.15 ± 9.17 1.33 ± 9.01
q.t	Trinity River	Burnt Ranch	5-11 9-14	-0.20 ± 0.99 2.09 ± 1.90	-1.11 ± 0.90 0.26 ± 0.73	-3.71 ± 10.94 -1.39	2.43 ± 10.40 -4.08
7	Trinity River	Hoopa	5 -1 1 9 - 14	0.22 <u>+</u> 1.11 -0.70	0.60 ± 0.97, 0.33 ± 1.03	-1.13 ± 10.96 -7.90	2.55 ± 8.98 -10.23
48	Trinity River	Lewiston	5-11 9-14	-0.58 ± 0.27	-0.18 + 0.60 0.04 + 0.73	-5.06 ± 10.63 0.32 ± 9.87	-4.12 <u>+</u> 8.64 2.53 <u>+</u> 8.99
Ъa	Van Duzen River	Bridgeville	5-12 9-15	-0.32 ± 0.91 -0.48	-0.30 ± 0.90	-28.93 <u>+</u> 10.22 -1.30 +	0.17 <u>+</u> 7.81 -8.63

APPENDIX E

GROUND WATER QUALITY

GROUND WATER QUALITY

Data presented in this appendix are measured values of selected quality characterisitcs of ground waters in the North Coastal Area, as shown on the "Area Orientation Map". The Ground Water Quality Data Program is based on systematic sampling of a predetermined network and is reported annually by water year. The Ground Water Quality Data Program is performed in cooperation with other state, local, and federal agencies.

All data presented in this volume are within the North Coastal Water Pollution Control Region (No. 1) excluding the Russian River drainage basin and the area along the coast south of the Mattole River drainage. Wells sampled in the ground water quality program are arranged by basin and tabulated in sequence by township, range, and section. The eight ground water basins sampled annually in the North Coastal Area are shown on Figure C-l in Appendix C.

The Ground Water Quality Data Program consists of selecting locations to be sampled, collection of samples by Department personnel or cooperators, aboratory analysis by an assigned agency, examination of the data to note crends or significant changes, and publication of the data and findings.

Except where noted, tabulated values for temperature are those measured in the field at the time of sampling. Comments on local conditions are noted in the field books but are not included in the tabulation.

Tabulated values for dissolved minerals are the analytical quantity reported in milligrams per liter (mpl) and a computed value for equivalents per million (epm). Electrical conductivity is reported as micromhos at 25°C and comperature is in degrees Fahrenheit. Laboratory analyses of ground waters were performed in the Department's Chemical Laboratory at Bryte, in accordance

-91-

with "Standard Methods for the Examination of Water and Waste Water", Eleventh Edition, or by the U. S. Geological Survey (USGS). The methods yield comparable accuracy of analysis. The determination of trace elements was performed by the "wet" analysis at the Bryte Laboratory. The results are reported in parts per billion. During 1963-64 the ground waters of Butte Valley were the only North Coastal Area ground waters analyzed for trace elements.

Well Numbering System

The state well numbering system used in this report is based on the township, range, and section subdivision of the United States Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of Water Resources. In this report the number of a well, assigned in accordance with this system, if referred to as the State Well Number and is described in more detail in Appendix C of this bulletin.

F
WATE
>
9
5
0
GROUND
ы
S
SE
ANALYSES
A
Z
A
MINERAL
Ξ
٤

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Specific conduct- ance		Mineral Co	Mineral Constituents in			milligrams per liter equivalents per million percent reactance volue	er liter ber million ance volue	Chie	Ż	Fluo	Mineral canstituents in milligrams per liter sui. To	anstitu ms per Sili-	ents in liter TDS	TOTAL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	pH (micro- mhos	micro- mhos		Calcium	Magne-	Sodium	Potas- sium	ale ale	bonate	Sulfote	e e e e e e e e e e e e e e e e e e e	trote	rida	Boron	÷ 8	Computed	hardness os
Nokth CokhAL k(510N 10000 10000 0.61 0.07 1.75 0.31	at 25 C)	at 25 C)		S	вw	Ÿ		co 3	нсо 3		Ū	° ov	"	80	sio 2		CoCO 3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					NON NON	TH COAS		10IN		0 ri	000						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8•4 205	205		1	1	14 0•61	1	0.07	107	I	11 0•31	1	1	ł	ł	-	82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.6 116	116		ł	1	0 • 3 5	1	0	41 0.67	1	130.37	1	1	1	1		46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8•1 284	284		ł	ł	0.91	1	0	66 1.08	ł	24 0 •6 8	ł	1	ł	ł		88
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.0 240	240		1	ł	22	1	0	44	1	20 0•56	l	ł	ł	ł		63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.5 197	197		1	ł	140.61	ł	0	61 1.000	1	150.42	1		ł	1		64
5 0.22 0.22 0 145 7	7.8 110	110		1	i i	70.30	1	0	46 0•75	I	7 0•20	ł	ł	1	1		40
30 10 174 14	8•2 244	244		1	ł	0.22	1	0	145 2•38	ł	70.20	ł	1	ł	1		126
15 0 13 34	8•5 379	379		ł	4	30		10.33	174	1	14 0•39	ł	1	ł	1		122
	7.0 180	180		ł	1	15	1	0	13 0.21	1	34 0•96	1	1	1	ł		44

TABLE E-I (Continued) MINERAL ANALYSES OF GROUND WATER

		TOTAL			94	95	215		56	6 109 8	5 29	8 60	4 8 8	6 156 8
uents in	er liter	Computed								176 208	108	158 200	64 128	216 258
constitu	ms pe	Sil;	SIO 2		1	1	1		1	1	1	ł	1	ł
Mineral constituents in	milligrams per liter	Boran	8		1	ł	1		ł	00•0	00.0	0•10	00 • 0	00 • 0
		Fluo- ride	u.		1	ł	1		1	1	1	1	1	1
		Ni- trate	NO 3		1	ł	ł		1	1•0 0•02 1	1•0 0•02 1	0.7 0.01	3.4 0.05 4	1•7 0•03 1
		Chlo- ride	Ū	10000	150.42	14 0•39	90.25		0	0.08.0	0 • 1 4 7	12 0•34 11	0.06	0•15 045
milligrams per liter	equivalents per million percent reactance value	Sulfate	50 4	10	1	1	1		1	2 0•04 1	0	0	0.02	0•19 4
milligrams per liter	guivalents ercent rea	Bicar- banate	нсо 3		130 2•13	120 1.97	230 3•77		68 1•11	208 3•41 96	115 1•88 92	169 2.77 89	1.15 90	240 3•93 92
8 9	ŭČ	Carban. ate	co 3	REGION	0	0	0		0	0	0	0	0	0
	_	Patas. sium	×	STAL RE	ł	ł	ł		1	4 0.10 3	0.20 10	8 0.20 7	0.05	0•20 5
1	Mineral Constituents in	Sadium	Ž	COA	18 0•78	12	40.17		0.22	30 1•30 36	28 1•22 61	36 1•57 53	0.22 17	24 1•04 24
U	Mineral C	Magne-	вw	CONTINUED)	1	4	1		ł	16 1823 34	0.33 17	9 0.74 25	0.58 45	1.56 1.56
		Calcium	ů		1	l	1		ł	19 0.95 27	0.25 13	0.45 15	0.45 35	31 355 36
Specific	canduct-	micro-	mhos at 25 C)		250	228	400		133	346	198	310	126	404
		Hď			7.9	8•1	0 8		7•2	8•4	8 2	7.8	7.6	0 • 8
	Tamp	Sampled	ч 0	z	ł	1	1		52	54	67	1	l	57
			Agy. Call.	2 PLAI	8 1 H 5050	2 H 5050	5050	7	5050	8 1 M 5050	5050	1 2 M 5050	1 2 M 5050	J 1 M 5050
State Mall	Number		Date Sampled Time	SMITH RIVER PLAI	18N/ 1W-17R 1 H 8-28-64 5050	18N/ 1W-17R 2 H 8-28-64 5050	18N/ 1W-34M 2 H 8-28-64 5050	BUTTE VALLEY	45N/ 2W- IP 1 M 6-22-64 5050	46N/ 1W-17B 1 M 6-22-64 5050	47N/ 1E-32A 1 M 6-22-64 5050	47N/ 1W-23H 2 M 6-22-64 5050	47N/ 2W-21H 2 M 6-22-64 5050	48N/ 1E-28J 1 M 6-22-64 5050

-94-

	-
	1
ς.	:
2	
2005	
Ξ.	
,	1
	(
	1
τ.	
,	1
)	
	(
-	
•	1
1	
۰.	
•	
1	
1	
	1
]	
	1
	1
	1

MINERAL ANALYSES OF GROUND WATER

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	State Well	Tamp.		Specific conduct-		Mineral Co	Mineral Constituents in		Ē	milligrams per liter equivalents per millian	er liter er million				Mineral constituents in milligrams per liter	onstitue ms per	ants in Liter	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	whan	:	ance	Calcium	Magne-	Sodium	Patas-		Bicar-	Sulfate	Chlo-	Ni.	Fluo-	Boron	Sili-	TDS	TOTAL
54 8.2 343 22 0.06 222 0.01 0		oompied 9 F	Ľ	mhas at 25 C)	J	muis Mg	ž	щ ж	CO 3	HCO 3	50 4	Ū	e ov		8	si0 2	Evap 180°C	as CoCO 3
54 8.2 343 0.26 0.26 0.26 0.26 0.26 0.12 0.00 0.22 0.26 2.14 1.22 0.31 0.22 0.24 0.28 0.12 0.20 $$ 2.26 0.214 1.22 0.312 0.212 0.20 $$ 2.27 2.27 2.21 2.27 2.21 2.21 2.26 0.212 0.26 0.26 0.212 0.26 0.212 0.26 0.212 0.26 0.212 0.26 0.212 0.26 0.212 0.26 0.212 0.26 0.212 <td>BUTTE VALLEY</td> <td></td> <td></td> <td></td> <td></td> <td>CONTINU</td> <td>TH COAS</td> <td>TAL RE</td> <td>SION</td> <td></td> <td>10</td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BUTTE VALLEY					CONTINU	TH COAS	TAL RE	SION		10	000						
8.1 437 0.90 2.14 1.22 0.31 0.221 0.21 0.21 0.00 $$ 237 236 0.21 2.62 0.34 0.11 $$ 237 237 236 0.00 $$ 237 236 0.00 $$ 237 0.21 0.22 0.21 0.21 0.20 $$ 237 $$ 125 5.96 0.05 0.77 0.72 <	48N/ 1E-30F 1 M 6-22-64 5050		8 • 2	343	1	1	22 0•96	l	0	204 3•34	1	0.08	1	1	1	l B		128
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	48N/ 1E-30N 1 M 6-22-64 5050		8 • 1	437	0•90 20	26 2.14 47	28 1•22 27	12 0.31 7	0	221 3•62 80	21 0.44	12 0•34 8	6•7 0•11 2	1	00.00	ł	232 271	152
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	48N/ 1E-36J 1 M 6-22-64 5050		7.8	1300	37 1.85 12	5 • 5 9 3 7	160 6•96 46	30 0.77		843 13•82 91	27 0•56 4	25 0•71 5	7•3 0•12 1	1	0 • 20	l t	769 818	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SHASTA VALLEY																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42N/ 5W-20J 1 M 11- 3-64 5050		7.7	338	1	1	22 0•96	1	0	195 3•20	ł	0.17	1	1	1	1		126
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42N/ 6W-10J 1 M 11- 3-64 5050		7.7	583	1	1	4 0•17	1	0	382 6•26	1	4 0•11	ł	1	ł	ł		325
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43N/ 6W-21R 1 M 11- 3-64 5050			484		1	8 0•35	1	0	300	1	0.06	ł	1	1	1		247
7.8 961 8 4 210 2 0 550 0 30 1.9 534 0.400 0.33 9.13 0.055 9.011 0.95 0.03 9.13 0.556 9.011 0 9 9 1 9 1 1 1 584 8.1 4.75 0 196 0.9 1 0 9 1	44N/ 6W-22K 1 M 11- 3-64 5050	1	7.3	450		16 1.32 28	20 0•87 19	0 .0 5	0	228 3•74 81	8 0•17 4	15 0•42 9	16•0 0•26 6	1	0.20	1	238 238	189
8.1 47550 0 196 2.17	45N/ 5W- 6E 1 M 11- 3-64 5050				0 • 4 0 8	0 • 9 9 7 8 9 8 8	210 9•13 92	0 .0 5	0	550 9.01 91	0	0 85 9 9	1•9 0•03	1	7.40	1	534	37
	45N/ 6W-19E 1 M 11- 3-64 5050					a t	2.17	1	0	196 3•21	1	0.06	1	U Z	1	1 8		128

-95-

STATE OF CALIFORNIA . THE RESOURCES AGENCY . DEPARTMENT OF WATER RESOURCES

*

TABLE E-I (Continued) MINERAL ANALYSES OF GROUND WATER

6			TOTAL	05 CoCO 3		100	114		140	61	209	47	187	186	175]
			\vdash			119	136		218			127 179				-
	ants in	liter	Computed	Evap 180°C					20			11				
	anstitue	ms per	15 8	51O 2		ł	1		1	î U	ł	ł	1	ł	1	1
	Mineral canstituents in	milligrams per liter	Boron	8		00.00	00 • 0		0.10	1	ł	ł	1	1	1	
			Fluo-	u.		1	1		1	1	1	ł	1	1	1	1
-			Ni. trate	NO 3		11.0 0.18 8	1•6 0•03 1		2•1 0•03	ł	1	48•0 0•77 40	1	1	ł	SOURCES
			Chlo- ride	Ū	10000	0.17 7	0.17 6		28 0•79 19	1	29 0.82	18 0•51 26	11 0•31	110.31	11 0•31	WATER RES
	auivalants per mer	percent reactance value	Sulfate	50 4	10	0.12 5	0.02		0•04 1	ł	ł	0•19 10	1	4	ł	STATE OF CALIFORNIA . THE RESOURCES AGENCY . DEPARTMENT OF WATER RESOURCES
-11-	minigrams per mer	ercent read	Bicar-	нсо 3		112 1.84 80	148 2•43 92		182 2•98 71	151 2•47	225 3•69	28 0•46 24	219 3•59	212 3.47	211 3•46	. DEPART
		έc	Carbon- ote	CO 3	GION	0	0		11 0•37 9	0	4 0.13	0	0	6 0.20	0	AGENCY
		-	Potos- sium	×	TAL RE	0•03 1	0		0•08 2	1	1	0•10 6	1	1	1	OURCES
	1	Mineral Canstituents in	Sodium	Ŷ	NORTH COASTAL REGION	0.35	10 • 43 16		30 1•30 31	28 1•22	14 0•61	18 0•78 43	9 0•39	100.43	9 0•39	THE RES
	C	Wineral C	Magne- sium	БW	0 V	12 0•99 42	0•08 3		6 0•49 12	ł	1	0•33 18	ł	ł	1	LIFORNIA
			Colcium	S		1.000 4.2	44 2.20 81		2 46 55	1	ł	12 0.60 33	1	1	1	TE OF CA
	Specific	canduct-	micra-	mhas at 25 C)		228	248		391	315	456	214	397	387	380	ST/
			Hď			7.1	7•5		8 • 7	8 • 1	8•4	7.4	7.3	8 • 5	7.9	1
T		Temp	Sompled	<u>ب</u>		ł	1		1	1	1	1	61	1	1	1
	State Wall			Date Sampled Agy. Time Call.	HAYFORK VALLEY	31N/12W-12L 1 M 7-29-64 5050	31N/12W-15K 1 M 7-29-64 5050	MAD RIVER VALLEY	5N/ 1E- 4H 2 H 7-16-64 5050	5N/ 1E- 8J 1 H 7-16-64 5050	6N/ 1E- 7M 1 H 7-16-64 5050	6N/ 1E- 8H 1 H 7-16-64 5050	6N/ 1E-17D 1 H 7-16-64 5050	6N/ 1E-19Q 1 H 7-11-64 5050	6N/ 1E-30N 1 H 7-16-64 5050	DWR 1982

	WATER
ontinued)	OF GROUND
TABLE E-I (C	ANALYSES C
	MINERAL

State Well	Temp		Specific conduct-		Mineral Co	Mineral Constituents in		6 9 6	milligrams per liter equivalents per million percent reactance value	er liter er million ance value				Mineral constituents in milligrams per liter	canstitue ms per	ents in Liter	
Number	when Sampled	Ĩ	ance micro-	Colcium	Magne-	Sodium	Patas-	Carbon-	Bicar- banata	Sulfate	Chio- ride	Ni. frate	Fluo- ride	Boran	:	TDS Camputed	TOTAL
Date Sampled Agy. Time Call.	. u.	L	mhas at 25 C)	ů	ßW	Ŷ	¥	co 3	нсо 3	50 4	Ū	NO 3	u	æ	sio 2	Evap 180°C	
MAD RIVER VALLEY					CONTINUED)	NORTH COASTAL REGION	TAL RE	GION		10	10000						
6N/ 1E-32F 1 H 7-16-64 5050	1	ی م	755	ł	ł	128	ł	7 0•23	263 4•31	1	98 2•76	1	1	1	l t		83
6N/ 1W- 1H 1 H 7-16-64 5050	1	7•0	132	1	1	140.61	ł	0	23 0•38	1	18 0•51	ă ă	ł	ł	L B		23
7N/ 1E-30B 1 H 7-16-64 5050	ł	7.3	163	1	ł	0.39	1	0	33 0•54	1	7 0•20	1	ł	l T	i B		53
EUREKA PLAIN																	
3N/ 1W- 5K 1 H 7-16-64 5050	64	6•L	145	8	1	14 0•61	1	0	55 0 • 90	8	14 0•39	1	l t	l	1		40
4N/ 1W-16H 1 H 7-16-64 5050	59	8 • 6	535	ł	8	32 1•39	1	8 0.27	260 4.26	1	28 0•79	1	1	1	1		209
5N/ 1E-18Q 1 H 7-16-64 5050	1	8 9	858	1.10 1.10	11 0•90 11	146 6 • 35 75	0.13	26 0.87 10	288 4•72 52	0 • 02	120 3•38 38	1•3 0•02	1	1 • 80	1	476 526	100
5N/ 1E-200 1 H 7-16-64 5050	1	7 • 8	278	8	ł	24 1•04	1	0	109 1•79	3	30 85	1	1	1	1		85
OWR 1982			:										1]

STATE OF CALIFORNIA . THE RESOURCES AGENCY . DEPARTMENT OF WATER RESOURCES

۲

TABLE E-I (Continued) MINERAL ANALYSES OF GROUND WATER

		TOTAL	hardness as	coCO 3		182	196	223	232	280	545	696	1602	366	
	ents in Liter	TDS	Camputed	Evap 180°C							998 13 40	975 1510	4214 4920	64 4 818	
	onstitue ns per	Sili-	8	510 2		1	ł	1	ł	1	ł	ł	1	ł	
	Mineral constituents in milligrams per liter		Boran	æ		1	ł		1	ł	00 • 0	0•30	0•20	0 • 30	
		Flue	ride	ц.		4	ł	1	1	ł	1	1	1	1	
-		ż	trate	NO 3		i I	1	1	l	1	10•0 0•16 1	2•6 0•04	13•0 0•21	7.44 0.12 1	
		Chlo-	ride	Ū	10000	70.20	22 0•62	79 2•23	22 0•62	13 0•37	584 16•47 89	540 15•23 83	2380 67.12 89	254 7.16 60	
er liter	per million	Bior-	Sulfate	50 4	10	8	1	1	l	1	27 0.56 3	19 0•40 2	182 3•79 5	37 0•77 6	
milligrams per liter	equivalents per million	Bicor-	bonate	нсо 3		179	1 6 6 2•72	245 4•02	252 4.13	288 4•72	82 1•34 7	156 2•56 14	246 4•03 5	220 3•61 30	1010
15	•	Carbon-	ate	co 3	REGION	0	0.17	0	10.33	0	0	0•13 1	0	0.33	
	_	Patas-	#uns	×	STAL RE	1	1	t I	ë T	1	0.05	4 0•10 1	24 0.61 1	16 0.41 3	
	Mineral Constituents in		Sodiwm	Z	COA	9 0 • 39	16	60 2 .6 1	25 1•09	10.43	168 7•30 40	109 4.74 25	960 41.74 56	4 • 195 995	
	Mineral Co	Magne-	minis	вw	NORTH	ł	ł	ł	ł	1	79 6•50 36	92 7.57 40	166 13•65 18	47 3.87 33	
			Calcium	ů		ł	1	1	ł	3	4 88 24	127 6•34 34	368 18.36 25	69 3•44 29	
Considie	conduct-	ance	mhas	at 25°C)		389	450	703	532	561	2020	1990	7440	1230	1410
			Hq			8•2	8 5	00 •	ی ۳	دی م	8•2	8•4	8•2	8 • 6	
	Tamp.	when	Sampled ° _F			59	57	55	59	64	57	60	58	56	
	Stote Well	Number	T	Time Coll.	EEL RIVER VALLEY	2N/ 14- 4D 1 H 7-29-64 5050	2N/ 1W- 7F 1 H 7-16-64 5050	2N/ 1W-17G 1 H 7-16-64 5050	3N/ 1W-29G 1 H 7-16-64 5050	3N/ 1W=30N 1 H 7-16-64 5050	3N/ 2W- 2A 2 H 7-16-64 5050	3N/ 2W-13J 1 H 7-29-64 5050	3N/ 2W-27G 1 H 7-16-64 5050	3N/ 2W-35M 1 H 7-16-64 5050	DWR 1982

	WATER
(Continued)	GROUND
— - Ш	ОF
TABLE	ANALYSES
	MINERAL

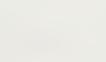
÷.

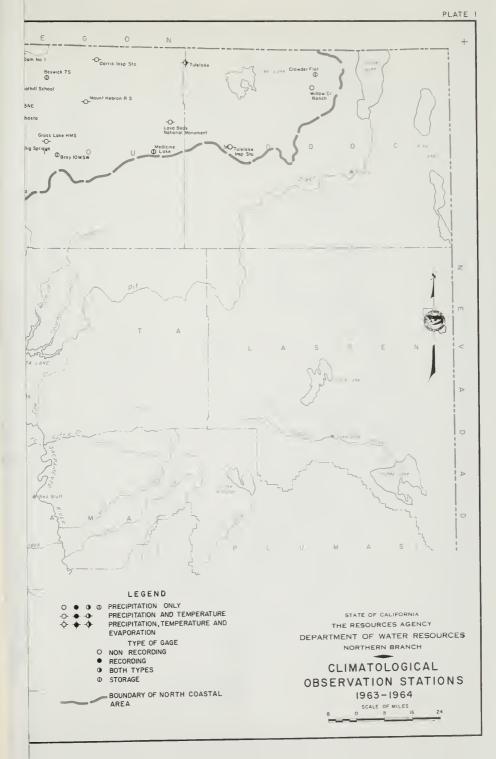
State Well	Temp		Specific conduct-		Mineral Canstituents	instituents in		E e	milligrams per liter equivalents per million percent reactance value	r liter er million nce value				Mineral canstituents in milligrams per liter	anstitue m s per	ents in · liter	
Number	when Somolod	Ha	ance micra-	Calcium	-eugaw	Sodium	Potos-	Carbon-	Bicar-	Sulfate	Chlo-	Ni.	Fluo-	Boron	:+ s	Computed	TOTAL
Date Sampled Agy. Time Call.	a o		mhas at 25 C)	ů	БW	Na	×	co 3	нсо 3	50 4	Ū	NO 3	ш.	80	sio 2	Evap 180°C	01 CoCO 3
ROUND VALLEY					NOR	NORTH COAS	STAL RE	REGION		10	10000						
22N/12W- 6L 2 M 864 5050	1 8	8•6	368	2•10 51	13 1•07 26	0•91 22	0•03 1	0.20 5	216 3.54 87	9 0•19 5	4 0•11 3	3•1 0•05 1	1	0•30	1	206 223	159
22N/12W-19F 1 M 864 5050		80 9 00	476	1 • 95 95	3•21 5-7	0•43 0	0	19 0•63 11	261 4•28 77	24 0•50 9	4 0•11 2	3.7 0.06 1	ł	0•30	1	267	258
22N/13W- 1J 3 M 864 5050	1	8•6	303	1 • 4 5 0 • 4 5 0	0 •66 20	1•13 95	0	0.20 6	158 2•59 77	11 0.23 7	10 • 28 8	3•4 0=05 1	1	0•30	ł	171 186	106
22N/13W-12K 1 M 864 5050	1	8•4	377	1 • 50 38	1 • 5 ¢	0.91 23	0.03	0•10 3	210 3.44 89	6 0 • 12 3	0.20	0.7	1	0.10	1	191 210	153
22N/13₩-13A 1 M 864 5050	1	8•4	241	1•45 55	10 0.82 31	0•35 13	0•03 1	0•13 5	138 2•26 86	0 • 0 4 0 0 0 0 4	4 0•11 4	0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	1	0.30	1 8	131	114
23N/12W-31N 1 M 864 5050		8•4	245	27 1•35 51	11 0•90 34	0•39 15	1 0•03 1	2 0•07 3	134 2•20 84	12 0.25 10	0 0 0	1•4 0•02 1	1	00•0	1	132	113
23N/12W-33L 1 M 864 5050	1	7.9	649	3 • 19 44	2 • 34 38 38	30 1•30 18	0•03	0	420 6•88 98	0	0 • 0 8 0 1	4 • 1 0 • 07 1	ł	0.10	ł	343 370	300
23N/13W-25P 1 M 864 5050		8•1	236	31 1.55 61	9 0•74 29	0.25 9	0.03	0	130 2•13 86	11 0.23	0 • 0 • 0	1•9 0•03 1	1	00.00	1	126	115
23N/13W-36P 2 M 864 5050		8•4	248	28 1.40 55	0.90 35	0.26 10	0	6 0.13 5	126 2•07 78	0.12	4 0.11	13•0 0•21 8	1	00 • 0	1	134 157	115
DWR 1982			CT A	TE OF CAL	P INGO	THE DEC	A 1976	CENCY	DEPADTU	W DE W	STATE OF CALIERDANA, THE DESUIDCES ACENCY, DEBADTIENT OF WATED DESVILDCES						

STATE OF CALIFORNIA - THE RESOURCES AGENCY - DEPARTMENT OF WATER RESOURCES

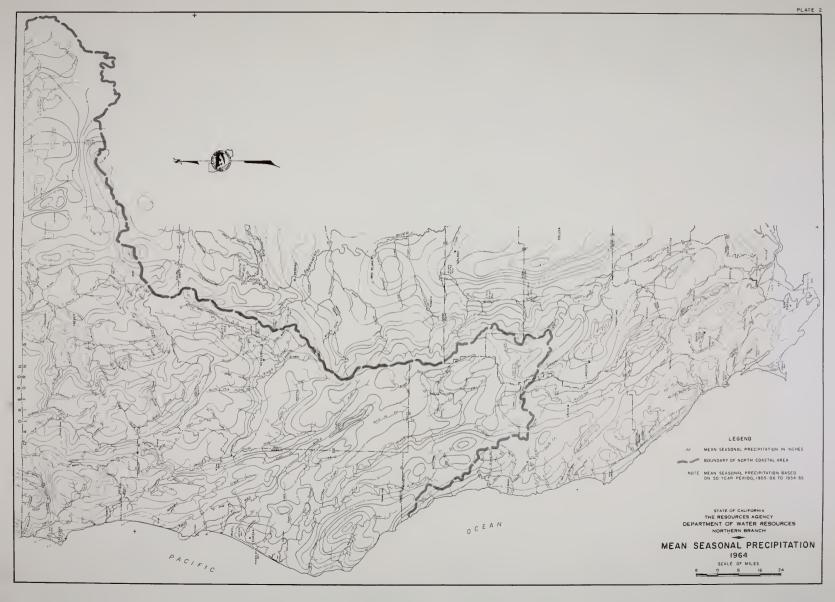
TABLE E-2 TRACE ELEMENT ANALYSES OF GROUND WATER 1964

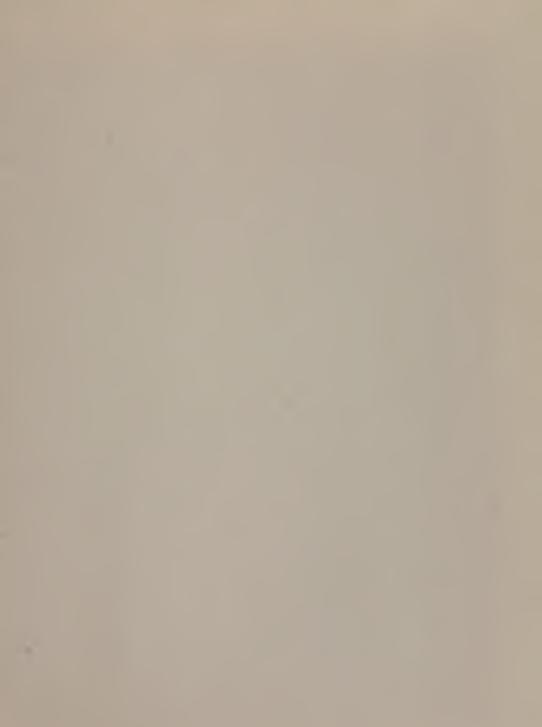
NORTH COASTAL REGION (No.1)


BUTTE VALLEY (1-3)


			Constitu	ents in par	ts per mil	lion	
Stote Well Number (MDB & M)	Date Sampled	Aluminum	Copper	lron (totol)	Lead	Manga- nese	Zinc
45N/2W-1P1	6-22-64	0.02	0.01	0.09	0.00	0.00	0.02
47N/1E-32A1	6-22-64	0.02	0.07	0.04	0.00	0.02	0.00
47N/2W-21H2	6-22-64	0.03	0.02	1.2	0.01	0.00	1.0
48n/1E-28J1	6-22-64	0.01	0.01	0.01	0.00	0.00	0.00
48n/1E-30F1	6-22-64	0.00	0.01	0.00	0.00	0.03	0.01
48n/1 E-30 N1	6-22-64	0.04	0.02	0.01	0.00	0.00	0.02
48n/1E-36J1	6-22-64	0.01	0.01	0.02	0.00	0.01	0.00










THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL OU LILIANTY OHE JON 12 TOB JUII 5 REC'D

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-25m-6,'66(G3855s4)458

	Call Number:
482507	TC824
California. Dept. of Water REsources. Bulletin.	C2 A2 no.130:64 v.1

